直接把series的list用pd.DataFrame()转换就可以了。
d
'''
[id_ AGENT0000000000
grid 88
timestamp 2021-04-26 00:01:00
pos_x 448.457
pos_y 204.423
bearing 4.1132
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid 48
timestamp 2021-04-26 00:02:00
pos_x 415.22
pos_y 127.278
bearing 4.30558
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid 8
timestamp 2021-04-26 00:03:00
pos_x 426.493
pos_y 44.0383
bearing 4.847
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -12
timestamp 2021-04-26 00:04:00
pos_x 428.85
pos_y -39.9286
bearing 4.74046
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -52
timestamp 2021-04-26 00:05:00
pos_x 428.115
pos_y -123.925
bearing 4.70363
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -92
timestamp 2021-04-26 00:06:00
pos_x 410.275
pos_y -206.009
bearing 4.49838
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -113
timestamp 2021-04-26 00:07:00
pos_x 397.043
pos_y -288.96
bearing 4.55421
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -153
timestamp 2021-04-26 00:08:00
pos_x 380.11
pos_y -371.236
bearing 4.50941
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -193
timestamp 2021-04-26 00:09:00
pos_x 390.828
pos_y -454.549
bearing 4.84034
category WALKING
speed_rank 1
speed 1.4
dtype: object, id_ AGENT0000000000
grid -212
timestamp 2021-04-26 00:10:00
pos_x 428.143
pos_y -529.806
bearing 5.17269
category WALKING
speed_rank 1
speed 1.4
dtype: object]
'''
df = pd.DataFrame(d)
'''
id_ grid timestamp pos_x pos_y bearing category speed_rank speed
0 AGENT0000000000 88 2021-04-26 00:01:00 448.456657 204.423017 4.113199 WALKING 1 1.4
1 AGENT0000000000 48 2021-04-26 00:02:00 415.219566 127.278375 4.305581 WALKING 1 1.4
2 AGENT0000000000 8 2021-04-26 00:03:00 426.492871 44.038285 4.847001 WALKING 1 1.4
3 AGENT0000000000 -12 2021-04-26 00:04:00 428.850296 -39.928628 4.740457 WALKING 1 1.4
4 AGENT0000000000 -52 2021-04-26 00:05:00 428.114793 -123.925408 4.703633 WALKING 1 1.4
5 AGENT0000000000 -92 2021-04-26 00:06:00 410.274789 -206.009111 4.498378 WALKING 1 1.4
6 AGENT0000000000 -113 2021-04-26 00:07:00 397.043201 -288.960453 4.554211 WALKING 1 1.4
7 AGENT0000000000 -153 2021-04-26 00:08:00 380.109717 -371.235948 4.509409 WALKING 1 1.4
8 AGENT0000000000 -193 2021-04-26 00:09:00 390.828151 -454.549303 4.840338 WALKING 1 1.4
9 AGENT0000000000 -212 2021-04-26 00:10:00 428.142720 -529.806349 5.172694 WALKING 1 1.4
'''