(3)在线多示例学习的鲁棒性目标追踪(MILTrack)—自适应外观模型
在设计外观模型时,重要一点是对目标的表达还是对背景知识的表达。
后来已经证明,通过一个有分辨能力的分类器将目标从背景中分离出来,可以获得很好的性能。
(1)对于分类器有很多的改进,但是有个主要的挑战是在更新自适应外观模型时该怎样选择正负样本。(作者本篇论文主要就是对正负样本选择进行改进)
普遍的做法一:选择当前追踪器的位置作为正样本,并从该位置的附近抽取一些样本作为负样本。
存在的问题:当追踪器的位置不精确,模型在更新时又会用到这些正样本作为次优的选择,随着时间推移,就到出现漂移(也就跟踪丢失)
普遍的做法二:
选择当前追踪器的位置作为正样本,并从该位置的很近距离范围内抽取一些样本也作为正样本。
存在的问题:由于正样本中包含一些不是很精确的样本,就会导致模型更新时遇到歧义,并使得分辨能力下降。
可选的做法:半监督方法,即在第一帧时给所选的正样本进行标记,后面帧中的训练样本标记不进行标记。
优点:这种方法适合目标不在视频中的场景。
(2)无论是跟踪方面还是检测方面,都会遇到上述问题并且也会用到上面的方法。Viola等认为在检测时使用传统的监督方法本身就存在歧义。为此提出Multiple Instance Learning(MIL)用于检测。
MIL方法的基本思想是:在训练阶段,样本保存在集合中(这里使用“包”的概念),然后为包贴上标签,而不是为每个样本贴标签(标签是用于指示正负样本)。只要包中至少有一个正样本,就给包贴上正标签。否则就贴上负标签。
当然在不指出包中样本的正确性时,样本的含糊性就会在这个算法中传递。
虽然有上面的问题,而且在缺乏学习知识时,这个方法会更困难实现。但是这个方法灵巧,而且结合弱分类器会产生很好的结果。
(3)本篇论文也提出类似的方法,而且使用基于外观模型的MIL方法用于目标追踪。需要注意,作者关注的是目标追踪不是目标检测,而且目标追踪比目标检测更具有挑战性。
为了使追踪器能包含MIL方法,就需要一种在线的MIL算法。(因为追踪器需要实时追踪,但是单纯的MIL方法不适合实时追踪。)
本文提出的在线MIL算法是基于Boosting方法,与MILBoost算法和AdaBoost算法有关。