截至2020年3月,668所高校成功申报“数据科学与大数据技术”专业,83所高校成功申报“大数据管理与应用”专业,1355所职业院校成功申报“大数据技术与应用专业”。然而,由于大数据专业是一个软硬件结合,以数据科学与大数据技术为特色的新型复合型专业,不少高校在进行专业建设和人才培养方面面临挑战。
在大数据教学中,本科院校的实践教学注重系统性,偏向新技术的应用,且对工程实践能力要求较高。在对相关情况深入调研的基础上,清华大学博士、中国大数据应用联盟人工智能专家委员会主任、中国信息协会教育分会人工智能教育专家委员会主任刘鹏教授在行业内很早就着手策划,并联合国内多所高校从事一线教学科研任务的专业师资为本科高校的大数据专业主编了“高级大数据人才培养丛书”,并由电子工业出版社出版。值得一提的是,该套丛书配套资源丰富,免费提供教学课件、学习及实验资料及其他资源。丛书一经出版,便收获大批高校师生的好评,诸多高校纷纷将其作为大数据专业教材使用。
具体而言,该丛书包含《云计算》、《大数据》、《深度学习》、《大数据库》、《大数据数学基础》、《数据挖掘》、《Python程序设计》、《大数据可视化》、《大数据实验手册》、《虚拟化与容器》。其中,《云计算》长年名列中国计算机图书被引用量前列,据知网评价微信公众号(微信号:cnkipj)《【工学】高被引图书前三甲,你读过吗?》报道,2010年至2014年《云计算》位居中国高被引图书自动化技术、计算机技术类别第一名。
为有效帮助老师进行大数据专业教学,为大家解答授课科研过程中关于教学、课程、实验等方面的疑问,并为师生们开展实验提供切实帮助,云创大数据创建了每本教材的交流群。欢迎大家微信扫码进群!
《云计算》
《云计算》第一版于2010年3月出版,第二版于2011年5月出版,时隔4年,第三版于2015年7月出版。《云计算》已经成为了全国高校教材,素有云计算领域“红宝书”之称,内容主要包括大数据与云计算,Google云计算原理与应用,Amazon云计算AWS,微软云计算Windwos Azure,Hadoop 2.0 主流开源云架构,Hadoop 2.0大家族,虚拟化技术,OpenStack 开源虚拟化平台,云计算数据中心,云计算核心算法,中国云计算技术。
《大数据》
《大数据》是国内绝大多数高校采用的教材《云计算》(1~3版)的姊妹篇,是清华大学博士、中国大数据应用联盟人工智能专家委员会主任、中国信息协会教育分会人工智能教育专家委员会主任刘鹏教授联合国内多位专家历时两年的心血之作。大数据领域一直缺乏一本权威教材,希望本书能够填补空白。本书系统地介绍了大数据的理论知识和实战应用,包括大数据采集与预处理、数据挖掘算法与工具、深度学习以及大数据可视化等,并深度剖析了大数据在互联网、商业和典型行业的应用。
《深度学习》
深度学习开启了人工智能发展的新一轮高潮。《深度学习》为没有任何机器学习基础的人提供了一个深度学习的入门教材,使用浅显易懂的语言和深入浅出的方式循循善诱,给初学者一个从原理到实践的深度学习大餐。本书内容主要包括:深度学习来源及应用,深度学习的数学基础,人脑神经系统与深度学习,深度学习基本过程,深度学习主流模型,深度学习开源框架,深度学习在图像中的应用,深度学习在语音中的应用,深度学习在文本中的应用,深度学习前沿发展。
《大数据库》
《大数据库》系统地介绍了大数据库的理论知识和实战应用,包括大数据库概述、分布式数据库HBase、数据仓库工具Hive、大数据查询系统Impala、内存数据库Spark、Spark SQL、键值数据库、流式数据库和数据应用托管平台Docker等,并紧跟大数据的发展前沿,既有理论深度,又有使用价值。通过本书可掌握大数据库的概念和原理,学习主要的大数据库技术和核心算法。
《数据挖掘》
《数据挖掘》的定位是大数据挖掘技术与应用。通过本书可掌握经典数据挖掘理论、方法、工具与应用,大数据环境下常用数据挖掘算法的优化,大数据新常态下催生的数据分析方法(如推荐系统、链接分析与网页排序、互联网信息抽取、日志挖掘与查询分析)、工具与应用等。
《Python程序设计》
本书是一本全面的从入门到实践的Python编程教程,从带领读者快速掌握基本的编程知识开始,循序渐进、层层深入地引导读者利用新学到的知识开发功能丰富的项目。全书首先介绍了Python的基本概念和安装;随后介绍了包括数据类型、文件操作、程序调试、类和对象、连接数据源等基本知识;并结合网络爬虫、数据挖掘、自然语言处理、数据可视化、Web和移动应用等工具,以案例为依托进行项目实战;最后介绍了国内各种云服务平台,以及如何运用Python实现访问。本书的全部实验均可在大数据实验平台上远程开展,也可在高校部署的BDRack大数据实验一体机上本地开展。
《大数据可视化》
有图有真相;有树木,有森林;沙中淘金,是大数据可视化的价值。《大数据可视化》教材在分析视觉特性基础上,尝试建立大数据理论与实践应用之间桥梁,读者能够体验数据之美,科学之美。作为大数据应用的分支,可视化有其自己的逻辑,本书尝试在大数据应用之海,擦亮可视化的贝壳,为大数据应用锦上添花。
《大数据实验手册》
《大数据实验手册》内涵HDFS实验、YARN实验、MapReduce实验、Hive实验、Spark实验、ZooKeeper实验、HBase实验、Storm实验、MongoDB实验、LevelDB实验、Mahout实验和综合实战等42个大数据实验,每个实验呈现详细的实验目的、实验内容、实验原理和实验流程指导,涵盖原理验证、综合应用、自主设计及创新的多层次实验内容。本书所有实验均在向公众开放的大数据实验平台和BDRack大数据实验一体机上验证通过。