# 机器学习算法概览

1、 监督式学习

2、非监督式学习

3、强化学习

• Ordinary Least Squares(最小二乘法)

• Logistic Regression(逻辑斯底回归)

• Stepwise Regression(逐步回归)

• Locally Estimated Scatterplot Smoothing(局部加权散点平滑法)

• k-Nearest Neighbour (kNN)

• Learning Vector Quantization (LVQ)

• Self-Organizing Map (SOM)

• Ridge Regression

• Least Absolute Shrinkage and Selection Operator (LASSO)

• Elastic Net

• Classification and Regression Tree (CART)

• Iterative Dichotomiser 3 (ID3)

• C4.5

• Chi-squared Automatic Interaction Detection (CHAID)

• Decision Stump

• Random Forest

• Multivariate Adaptive Regression Splines (MARS)

• Naive Bayes

• Averaged One-Dependence Estimators (AODE)

• Bayesian Belief Network (BBN)

• Support Vector Machines (SVM)

• Linear Discriminate Analysis (LDA)

• K-Means

• Expectation Maximisation (EM)

• Apriori algorithm

• Eclat algorithm

• Perceptron

• Back-Propagation

• Hopfield Network

• Self-Organizing Map (SOM)

• Learning Vector Quantization (LVQ)

Deep Learning(深度学习)方法是人工神经网络在当下的一个变种。相比传统的神经网络，它更关注更加复杂的网络构成，许多方法都是关心半监督学习，就是一个大数据集中只有少量标注数据的那种问题。

• Restricted Boltzmann Machine (RBM)

• Deep Belief Networks (DBN)

• Convolutional Network

• Stacked Auto-encoders

• Principal Component Analysis (PCA)

• Partial Least Squares Regression (PLS)

• Sammon Mapping

• Multidimensional Scaling (MDS)

• Projection Pursuit

Ensemble methods(组合方法)由许多小的模型组成，这些模型经过独立训练，做出独立的结论，最后汇总起来形成最后的预测。组合方法的研究点集中在使用什么模型以及这些模型怎么被组合起来。

• Boosting

• Bootstrapped Aggregation (Bagging)