数学小记

63 篇文章 1 订阅

近来看到的一个小小的数学问题,简单一记~

问题

给定任一奇数a,求平方数b,使其与a的和等于另一平方数c

初一看该问题没想到直接的构造方法,首先使用穷举法来看下小范围数值的结果:

function is_square_num(n)
    local sqrt = math.floor(math.sqrt(n))
    return sqrt * sqrt == n
end

function calc_square_sum(n)
    local begin = 1
    while true do
        local b = begin * begin
        if is_square_num(b + n) then
            return b
        else
            begin = begin + 1
        end
    end
end

function print_square_sum(n)
    local b = calc_square_sum(n)
    print(n .. " + " .. b .. " = " .. (n + b))
end

测试一些小范围数值:

print_square_sum(3)
print_square_sum(5)
print_square_sum(7)

结果如下:

3 + 1 = 4
5 + 4 = 9
7 + 9 = 16

观察到程序搜索到的b和c都可以写成n和n+1的形式:

我们简单来计算一下 (n+1)^2 - (n)^2:

结果为 2n + 1, 考虑到任一奇数都可以表示成这种形式,所以使用以下构造方法即可立即得到上述的b和c:

改写的代码如下:

function is_square_num(n)
    local sqrt = math.floor(math.sqrt(n))
    return sqrt * sqrt == n
end

function calc_square_sum(n)
    local b = (n - 1) / 2
    return math.floor(b * b)
end

function print_square_sum(n)
    local b = calc_square_sum(n)
    print(n .. " + " .. b .. " = " .. (n + b))
end

引申问题

证明给定任一奇平方数a,都存在偶平方数b,使其与a的和等于另一平方数c

首先奇平方数也是奇数,所以根据第一个问题的结论方法,我们可以找到符合条件的平方数b和c,其中:

剩下的问题便是证明b是偶数,结合a是奇平方数的前提,我们可以得到:

综上,问题得证~

Protobuf是一种高效的序列化协议,可以用于据交换和据存储。它的主要优势是大小小,速度快,可扩展性强。下面是使用Protobuf的一些小记: 1. 定义消息格式 首先,需要定义消息格式,以便Protobuf可以将据序列化和反序列化。消息格式定义在.proto文件中,使用protobuf语言编。例如,下面是一个简单的消息格式定义: ``` syntax = "proto3"; message Person { string name = 1; int32 age = 2; } ``` 这个消息格式定义了一个名为Person的消息,包含两个字段:name和age。 2. 生成代码 一旦消息格式定义好,就可以使用Protobuf编译器生成代码。编译器将根据消息格式定义生成相应的代码,包括消息类、序列化和反序列化方法等。可以使用以下命令生成代码: ``` protoc --java_out=. message.proto ``` 这将生成一个名为message.pb.java的Java类,该类包含Person消息的定义以及相关方法。 3. 序列化和反序列化 一旦生成了代码,就可以使用Protobuf序列化和反序列化据。例如,下面是一个示例代码,将一个Person对象序列化为字节组,并将其反序列化为另一个Person对象: ``` Person person = Person.newBuilder() .setName("Alice") .setAge(25) .build(); byte[] bytes = person.toByteArray(); Person deserializedPerson = Person.parseFrom(bytes); ``` 这个示例代码创建了一个Person对象,将其序列化为字节组,然后将其反序列化为另一个Person对象。在这个过程中,Protobuf使用生成的代码执行序列化和反序列化操作。 以上是使用Protobuf的一些基本步骤和注意事项,希望对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值