2020 CCPC 威海站 C Rencontre 树形DP + 数学期望

本文详细探讨了一种图论问题,即如何通过最小化三个顶点到某点距离之和来求解平均路径长度。通过数学证明和动态规划算法,展示了如何将问题转化为求期望值,并提供了高效的C++代码实现。算法利用树上路径唯一性,计算每条边的贡献,最终得到精确答案。
摘要由CSDN通过智能技术生成

传送门

分析

首先需要推出来一个结论: m i n ( d i s ( u 1 , v ) + d i s ( u 2 , v ) + d i s ( u 3 , v ) ) = d i s ( u 1 , u 2 ) + d i s ( u 2 , u 3 ) + d i s ( u 3 , u 1 ) ∗ 0.5 min(dis(u_1,v) + dis(u_2,v) + dis(u_3,v)) = dis(u_1,u_2) + dis(u_2,u_3) + dis(u_3,u_1) * 0.5 min(dis(u1,v)+dis(u2,v)+dis(u3,v))=dis(u1,u2)+dis(u2,u3)+dis(u3,u1)0.5
简单证明一下,考虑树上路径唯一,任取一点 v v v a a a b b b c c c的距离都会经过 a v av av a v ∗ 2 av*2 av2,同理可得, b v ∗ 2 bv*2 bv2 c v ∗ 2 cv*2 cv2
这样,这个问题就转化成了求 E ( d i s ( u 1 , u 2 ) + d i s ( u 2 , u 3 ) + d i s ( u 3 , u 1 ) ∗ 0.5 ) E(dis(u_1,u_2) + dis(u_2,u_3) + dis(u_3,u_1) * 0.5) E(dis(u1,u2)+dis(u2,u3)+dis(u3,u1)0.5)
∑ ∑ d i s ( x , y ) n u m 1 ∗ n u m 2 \frac{\sum\sum dis(x,y)}{num_1 * num_2} num1num2dis(x,y)
剩下的算一下每条边的贡献, D P DP DP就可以啦

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10,M = N * 2;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
	char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
	while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int h[N],e[M],ne[M],w[M],idx;
ll num[10];
ll sz[10][N];
ll d[10];
int n;

void add(int x,int y,int z){
	ne[idx] = h[x],e[idx] = y,w[idx] = z,h[x] = idx++;
}

void cal(int u,int fa){
	for(int i = h[u];~i;i = ne[i]){
		int j = e[i];
		if(j == fa) continue;
		cal(j,u);
		for(int p = 0;p < 3;p++) sz[p][u] += sz[p][j];
	}
}

void dfs(int u,int fa){
	for(int i = h[u];~i;i = ne[i]){
		int j = e[i];
		if(j == fa) continue;
		for(int p = 0;p < 3;p++){
			d[p] += w[i] * sz[p][j] * (num[(p + 1) % 3] - sz[(p + 1) % 3][j]) + w[i] * sz[(p + 1) % 3][j] * (num[p] - sz[p][j]);
		}
		dfs(j,u);
	}
}

int main() {
	memset(h,-1,sizeof h);
	read(n);	
	for(int i = 1;i < n;i++) {
		int a,b,c;
		read(a),read(b),read(c);
		add(a,b,c),add(b,a,c);
	}	
	for(int i = 0;i < 3;i++){
		read(num[i]);
		for(int j = 1;j <= num[i];j++){
			int x;
			read(x);
			sz[i][x]++;
		}
	}
	cal(1,0);
	dfs(1,0);
	double ans = 0;
	ans = 1.0 * d[0] / (num[0] * num[1]);
	ans += 1.0 * d[1] / (num[1] * num[2]);
	ans += 1.0 * d[2] / (num[2] * num[0]);
	ans /= 2;
	printf("%.9lf\n",ans);
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值