《PCA 原理推导》18-4线性变换生成的随机变量y_i的方差 公式解析

本文是将文章《PCA 原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。


公式 18 - 4 18\text{-}4 18-4 的内容如下:

var ( y i ) = a i T Σ a i , i = 1 , 2 , … , m \text{var}(y_i) = a_i^T \Sigma a_i, \quad i = 1, 2, \dots, m var(yi)=aiTΣai,i=1,2,,m

解释公式 18 - 4 18\text{-}4 18-4

背景与意义

公式 18 - 4 18\text{-}4 18-4 描述了通过线性变换生成的随机变量 y i y_i yi 的方差( var ( y i ) \text{var}(y_i) var(yi))。方差是衡量随机变量 y i y_i yi 的变异性(信息量)的重要指标。在主成分分析(PCA)中,选择主成分的目标是找到一个方向,使得投影数据的方差最大,因此 18 - 4 18\text{-}4 18-4 是PCA理论的关键公式之一。


公式符号解析
  1. var ( y i ) \text{var}(y_i) var(yi) 表示变换后的随机变量 y i y_i yi 的方差,反映了数据 x x x 在新方向 a i a_i ai 上的分布宽度(变异程度)。

  2. Σ \Sigma Σ 表示随机向量 x x x 的协方差矩阵,定义为:
    Σ = E [ ( x − μ ) ( x − μ ) T ] \Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T] Σ=E[(xμ)(xμ)T]

    它是一个 m × m m \times m m×m 的对称矩阵,包含了 x x x 的每个分量的方差(对角线元素)以及不同分量之间的协方差(非对角线元素)。

  3. a i T Σ a i a_i^T \Sigma a_i aiTΣai

    • a i T a_i^T aiT:是 a i a_i ai 的转置,表示权重向量 a i a_i ai
    • Σ a i \Sigma a_i Σai:表示将协方差矩阵 Σ \Sigma Σ 与向量 a i a_i ai 相乘,结果是一个新向量。
    • a i T Σ a i a_i^T \Sigma a_i aiTΣai:是一个标量,表示 a i a_i ai 矢量在协方差矩阵 Σ \Sigma Σ 上的二次型形式,结果是变换后的随机变量 y i y_i yi 的方差。

公式推导

根据随机变量的线性变换性质,假设 y i = a i T x y_i = a_i^T x yi=aiTx,则 y i y_i yi 的方差为:

var ( y i ) = var ( a i T x ) \text{var}(y_i) = \text{var}(a_i^T x) var(yi)=var(aiTx)

利用方差的性质(线性变换的方差公式),我们有:
var ( a i T x ) = a i T Σ a i \text{var}(a_i^T x) = a_i^T \Sigma a_i var(aiTx)=aiTΣai

这里的推导关键是:

  1. Σ = cov ( x , x ) \Sigma = \text{cov}(x, x) Σ=cov(x,x) x x x 的协方差矩阵。
  2. a i T x a_i^T x aiTx 的方差由 a i a_i ai 和协方差矩阵 Σ \Sigma Σ 决定。

因此,得到公式 18 - 4 18\text{-}4 18-4


几何意义

公式 18 - 4 18\text{-}4 18-4 的核心是描述了随机向量 x x x a i a_i ai 方向上的分布宽度,即投影到主成分方向后的变异性。具体来说:

  1. a i T Σ a i a_i^T \Sigma a_i aiTΣai 表示通过权重向量 a i a_i ai 对协方差矩阵 Σ \Sigma Σ 的加权平均,结果是数据在 a i a_i ai 方向上的方差。

  2. 最大化方差:PCA 的目标是找到一个方向 a 1 a_1 a1,使得投影方差 var ( y 1 ) \text{var}(y_1) var(y1) 最大。这对应于优化问题:
    max ⁡ a 1 a 1 T Σ a 1 subject to  a 1 T a 1 = 1 \max_{a_1} a_1^T \Sigma a_1 \quad \text{subject to } a_1^T a_1 = 1 a1maxa1TΣa1subject to a1Ta1=1
    这个约束条件确保了 a 1 a_1 a1 是一个单位向量。

  3. 二次型的意义 a i T Σ a i a_i^T \Sigma a_i aiTΣai 是协方差矩阵的一个二次型,表示了数据沿 a i a_i ai 方向的“能量”(即方差)。


与PCA的关系

在PCA中,公式 18 - 4 18\text{-}4 18-4 是核心公式之一,因为它直接定义了主成分的选择原则:

  • 我们通过求解协方差矩阵 Σ \Sigma Σ 的特征值和特征向量,找到投影方差最大的方向(即第一主成分 a 1 a_1 a1 对应的方向)。
  • 协方差矩阵 Σ \Sigma Σ 的特征向量是主成分的方向,而对应的特征值则是沿这些方向的方差。

举例说明

假设数据 x x x 是二维向量,协方差矩阵为:
Σ = [ 4 2 2 3 ] \Sigma = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix} Σ=[4223]

假设我们选取一个方向 a 1 = [ 0.8 0.6 ] a_1 = \begin{bmatrix} 0.8 \\ 0.6 \end{bmatrix} a1=[0.80.6],则投影到该方向的方差为:
var ( y 1 ) = a 1 T Σ a 1 \text{var}(y_1) = a_1^T \Sigma a_1 var(y1)=a1TΣa1

计算过程:

  1. 先计算 Σ a 1 \Sigma a_1 Σa1
    Σ a 1 = [ 4 2 2 3 ] [ 0.8 0.6 ] = [ ( 4 ⋅ 0.8 + 2 ⋅ 0.6 ) ( 2 ⋅ 0.8 + 3 ⋅ 0.6 ) ] = [ 4.4 3.4 ] \Sigma a_1 = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.6 \end{bmatrix} = \begin{bmatrix} (4 \cdot 0.8 + 2 \cdot 0.6) \\ (2 \cdot 0.8 + 3 \cdot 0.6) \end{bmatrix} = \begin{bmatrix} 4.4 \\ 3.4 \end{bmatrix} Σa1=[4223][0.80.6]=[(40.8+20.6)(20.8+30.6)]=[4.43.4]

  2. 再计算 a 1 T Σ a 1 a_1^T \Sigma a_1 a1TΣa1
    a 1 T Σ a 1 = [ 0.8 0.6 ] [ 4.4 3.4 ] = 0.8 ⋅ 4.4 + 0.6 ⋅ 3.4 = 3.52 + 2.04 = 5.56 a_1^T \Sigma a_1 = \begin{bmatrix} 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} 4.4 \\ 3.4 \end{bmatrix} = 0.8 \cdot 4.4 + 0.6 \cdot 3.4 = 3.52 + 2.04 = 5.56 a1TΣa1=[0.80.6][4.43.4]=0.84.4+0.63.4=3.52+2.04=5.56

因此,在方向 a 1 a_1 a1 上的投影方差为 5.56。


公式 18 - 4 18\text{-}4 18-4 的作用
  1. 衡量方向的方差:公式提供了一种计算随机向量 x x x 在任意方向 a i a_i ai 上的方差的方法。
  2. 主成分选择的依据:通过最大化公式 a i T Σ a i a_i^T \Sigma a_i aiTΣai,可以找到方差最大的方向,这就是PCA的核心思想。
  3. 优化问题的基础:公式 18 - 4 18\text{-}4 18-4 是PCA中优化问题的目标函数(即最大化方差),通过求解特征值和特征向量可以实现这一目标。

总结

公式 18 - 4 18\text{-}4 18-4 描述了投影方差的计算,它是PCA的核心公式之一。通过这个公式,我们可以计算出任意方向上的投影方差,并根据最大化投影方差的原则找到主成分方向。在实际应用中,这个公式帮助我们提取数据中最重要的信息并实现降维。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值