有关推荐系统的一些资料

   书籍或论文
 
   附件1:《集体智慧编程(Collective Intelligence)》 第二章 Making Recommendations;
   下载地址:http://download.csdn.net/source/272746
    
   附件2:ACM Recsys2010 workshop on Recommender Systems  and the Social Web 的论文集
   下载地址:http://www.dcs.warwick.ac.uk/~ssanand/RSWeb_files/Proceedings_RSWEB-10.pdf    
   
   附件3:2009 ACM的一篇文章 《The Wisdom of the Few》
   下载地址:http://www.cscs.umich.edu/~jmpujol/public/papers/wisdowm_few_sigir09.pdf

   Recommender Systems Handbook(感谢阿稳推荐~)
   豆瓣链接:http://book.douban.com/subject/3695850/

   第一届推荐推荐系统高峰论坛:http://www.resysforum.org/(峰会视频,ppt)
   一些网址
      
   豆瓣在推荐领域的实践和思考  作者是 豆瓣算法组的老大
   http://www.slideshare.net/clickstone/ss-2756065
     
   Resys China
   http://www.resyschina.com/

   Resys China的豆瓣小站
   http://site.douban.com/106414/
     
      
   几个博客
      
   胖子,豆瓣算法团队负责人
   http://www.douban.com/people/1000037/

   clickstone, 北航博士,cutt网创始人      
   http://www.guwendong.com/
   附豆瓣页面:http://www.douban.com/people/wdgu/

   xlvector, 中科院博士,Netflix Prize第二名团队成员
   http://xlvector.net/blog/

   阿稳,中科大硕士,豆瓣算法团队,算法攻城师
   http://www.wentrue.net/blog/
   附豆瓣页面:http://www.douban.com/people/wentrue/

   canbiao,百度广告部门
   http://www.douban.com/note/89843147/
   chen_1st
   百度hi:http://hi.baidu.com/chen_1st
   豆瓣:http://www.douban.com/people/chen_1st/
 
 
开源项目:

duniehttp://www.duineframework.org/

 Mahout-Taste:http://mahout.apache.org/

 
 
my slideshare id:idy_10000;http://www.slideshare.net/idy_10000


   个人觉得推荐系统本身还是有科研价值的,基于以下三点考虑:
      
   1.常规的推荐系统的问题(如冷启动等)一直没有得到很好的解决;
      
   2.传统的机器学习算法一般是基于数据和知识不足的假设,而在数据爆炸的今天,前提假设已经发生了非常大的变化,从而需要对旧的算法做出改进;(借鉴自once的年终总结)
      
   3.在工业界已经证明了其价值(Google, Facebook,Netflix,国内的 百度、豆瓣)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值