书籍或论文 附件1:《集体智慧编程(Collective Intelligence)》 第二章 Making Recommendations; 下载地址:http://download.csdn.net/source/272746 附件2:ACM Recsys2010 workshop on Recommender Systems and the Social Web 的论文集 下载地址:http://www.dcs.warwick.ac.uk/~ssanand/RSWeb_files/Proceedings_RSWEB-10.pdf 附件3:2009 ACM的一篇文章 《The Wisdom of the Few》 下载地址:http://www.cscs.umich.edu/~jmpujol/public/papers/wisdowm_few_sigir09.pdf Recommender Systems Handbook(感谢阿稳推荐~) 豆瓣链接:http://book.douban.com/subject/3695850/ 第一届推荐推荐系统高峰论坛:http://www.resysforum.org/(峰会视频,ppt)
一些网址 豆瓣在推荐领域的实践和思考 作者是 豆瓣算法组的老大 http://www.slideshare.net/clickstone/ss-2756065 Resys China http://www.resyschina.com/ Resys China的豆瓣小站 http://site.douban.com/106414/ 几个博客 胖子,豆瓣算法团队负责人 http://www.douban.com/people/1000037/ clickstone, 北航博士,cutt网创始人 http://www.guwendong.com/ 附豆瓣页面:http://www.douban.com/people/wdgu/ xlvector, 中科院博士,Netflix Prize第二名团队成员 http://xlvector.net/blog/ 阿稳,中科大硕士,豆瓣算法团队,算法攻城师 http://www.wentrue.net/blog/ 附豆瓣页面:http://www.douban.com/people/wentrue/ canbiao,百度广告部门 http://www.douban.com/note/89843147/
chen_1st
百度hi:http://hi.baidu.com/chen_1st
豆瓣:http://www.douban.com/people/chen_1st/
开源项目:
dunie:http://www.duineframework.org/
Mahout-Taste:http://mahout.apache.org/
my slideshare id:idy_10000;http://www.slideshare.net/idy_10000 个人觉得推荐系统本身还是有科研价值的,基于以下三点考虑: 1.常规的推荐系统的问题(如冷启动等)一直没有得到很好的解决; 2.传统的机器学习算法一般是基于数据和知识不足的假设,而在数据爆炸的今天,前提假设已经发生了非常大的变化,从而需要对旧的算法做出改进;(借鉴自once的年终总结) 3.在工业界已经证明了其价值(Google, Facebook,Netflix,国内的 百度、豆瓣)