梯度下降法实现(step-by-step)

这篇博客深入介绍了机器学习中的线性回归和梯度下降法,详细阐述了梯度下降的原理,并提供了实验数据和代码实现,包括θ0和θ1的初始化以及梯度下降与随机梯度下降的运用。
摘要由CSDN通过智能技术生成

机器学习入门:线性回归及梯度下降对原理做了详细的说明

本文主要记录实现时的代码

1.实验数据

采用随机的方式,生成(X,Y)数据对

k=10;
x=zeros(k,1);
y=zeros(k,1);
for i=1:k
x(i,1)=30+i*5;
y(i,1)=(8+rand)*x(i,1);
end
plot(x,y,'.r');

2.theta0,theta1,J函数

当theta0=0时

x=[1 2 3];
y=[1 2 3];
k=5;
c1=zeros(1,k);
Jf=zeros(1,k);
for i=1:k
c1(1,i)=(i-1)*0.5;
end
for i=1:k
for j=1:3
Jf(1,i)=Jf(1,i)+(c1(1,i)*x(1,j)-y(1,j))^2;
end
Jf(1,i)=Jf(1,i)/6;
end
plot(c1,Jf);

function 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值