给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过105的正整数N,表示数列中数的个数,第二行给出N个不超过1.0的正数,是数列中的数,其间以空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后2位。
输入样例:4 0.1 0.2 0.3 0.4输出样例:
5.00
分析:
C#调了二十多分钟,死活第三个测试点过不去··随手写个C,通过了····可能还是编译器精度的问题吧。
考察的主要是个数学问题~~
using System; namespace PAT { class Program { static void Main() { int length = int.Parse(Console.ReadLine()); decimal[] numbers = GetFloatArray(length); decimal sum = 0.0M; for (int i = 0; i < length; i++) { sum += numbers[i] * (length - i) * (i + 1); } Console.WriteLine("{0:F2}", sum); } static decimal[] GetFloatArray(int length) { string[] numStr = Console.ReadLine().Split(' '); decimal[] numbers = new decimal[length]; for (int i = 0; i < length; i++) numbers[i] = decimal.Parse(numStr[i]); return numbers; } } }
通过的C代码:
#include <stdio.h> int main() { int N; scanf("%d", &N); double temp; double sum = 0.0; for(int i = 0; i < N; i++) { scanf("%lf", &temp); sum += (double)(i+1) * (double)(N-i) * temp; } printf("%.2lf\n", sum); return 0; }