python调用pb

3 篇文章 0 订阅
该代码示例展示了如何使用Python的win32api和win32gui库来查找具有特定标题的PB(PowerBuilder)窗口,并向其发送消息。通过EnumWindows遍历窗口,查找包含pycallpb的窗口标题,然后使用SendMessage函数发送参数,模拟PB中的其他事件处理。此外,还给出了直接按指定句柄发送消息的例子。
摘要由CSDN通过智能技术生成

python调用pb

# pip install pypiwin32

import win32api

import win32gui

# 读取系统窗口列表信息

# 按窗口名称获取窗口句柄

# 给PB开发的应用窗口发送一个参数1,通知执行结束

# PB接收,other事件使用pbm_other,

# string ls_tmp

# long ll_return

# if message.number=1600 then

#   mle_1.text=string(wparam)

#   mle_2.text=string(lparam)

# end if



#查找pb窗口标题

# hWndList = []

# win32gui.EnumWindows(lambda hWnd, param: param.append(hWnd), hWndList)

# for hwnd in hWndList:

#     clsname = win32gui.GetClassName(hwnd)

#     title = win32gui.GetWindowText(hwnd)

#     if (title.find('pycallpb') >= 0):

#         win32api.SendMessage(hwnd, 1600, 21, 11)

#         print(hwnd)



#按指定句柄找,pb中Handle(this) 得到hwnd=203218

win32api.SendMessage(1182656, 1600, 21, 11)


print('ok')

Python中,调用Python v5模型通常涉及使用预训练的机器学习模型或者深度学习库,如TensorFlow、PyTorch或Hugging Face的Transformers等。如果你指的是像TensorFlow Serving这样的服务,你可以这样做: 1. 安装必要的库:首先,确保已经安装了`tensorflow`和`tensorflow-serving-api`(如果使用TensorFlow Serving)。 ```bash pip install tensorflow tensorflow-serving-api ``` 2. 加载模型:如果你有一个已经保存的模型(例如,一个`.pb`文件),你可以使用`tf.saved_model.load()`来加载模型。 ```python import tensorflow as tf model = tf.saved_model.load('path_to_your_model') ``` 3. 创建预测接口:对于TensorFlow Serving,你需要创建一个会话,并通过HTTP请求发送数据来获取预测。 ```python def predict(data): request_body = json.dumps({"signature_name": "serving_default", "instances": [data]}) headers = {"content-type": "application/json"} return grpc.request("localhost:8501", "POST", "/v1/models/model_name:predict", request_body, headers=headers) # 替换'model_name'为你的模型名称 prediction = predict({"input_data": data_array}) ``` 4. 获取预测结果:返回的结果通常是一个字典,包含预测的输出值。 注意:上述步骤可能会因具体的模型架构、API版本和部署环境有所不同。如果你是指某个特定的预训练模型(比如BERT、GPT-Neo),则可能需要使用Hugging Face的`transformers`库或其他相应的库来调用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值