数据层及参数

JLU-IPVR

听笙

要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个层(layer)构成,每一层又由许多参数组成。所有的参数都定义在caffe.prototxt这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。

层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。

今天我们就先介绍一下数据层.

数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。

数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。

所有的数据层的都具有的公用参数:先看示例

layer {

  name:"cifar"

  type:"Data"

  top:"data"

  top:"label"

  include {

    phase: TRAIN

  }

 transform_param {

    mean_file:"D:/examples/cifar10/mean.binaryproto"

  }

  data_param {

    source:"D:/examples/cifar10/cifar10_train_lmdb"

    batch_size:100

    backend:LMDB

  }

}

name: 表示该层的名称,可随意取

type: 层类型,如果是Data,表示数据来源于LevelDBLMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采用的LevelDB或LMDB数据,因此层类型设置为Data。

top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。

data与 label: 在数据层中,至少有一个命名为datatop。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的

include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。

Transformations: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255,即将输入数据由0-255归一化到0-1之间

其它的数据预处理也在这个地方设置:

transform_param

 {

    scale: 0.00390625

    mean_file_size: "D:/examples/cifar10/mean.binaryproto"

    # 用一个配置文件来进行均值操作

    mirror: 1  # 1表示开启镜像,0表示关闭,也可用ture和false来表示

    # 剪裁一个227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪

    crop_size: 227

  }

1.     数据来自数据库(Levedb和LMDB)

层类型(layertype):Data

必须设置的参数:

  source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb

  batch_size: 每次处理的数据个数,如64可选的参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

 backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.示例:

layer {

 name: "mnist"

 type: "Data" 

top: "data"

 top: "label"

 include {

   phase:TRAIN

 }

 transform_param {

   scale:0.00390625

 }

 data_param {

   source:"examples/mnist/mnist_train_lmdb"

  batch_size: 64

  backend: LMDB

 }

}

2、数据来自于内存

层类型:MemoryData

必须设置的参数:

batch_size:每一次处理的数据个数,比如2

channels:通道数

height:高度

width: 宽度

示例:

layer {

  top: "data"

  top: "label"

  name: "memory_data"

  type: "MemoryData"

  memory_data_param{

    batch_size: 2

    height: 100

    width: 100

    channels: 1

  }

  transform_param {

    scale: 0.0078125

    mean_file: "mean.proto"

    mirror: false

  }

}

3、数据来自于HDF5

层类型:HDF5Data

必须设置的参数:

source: 读取的文件名称

batch_size:每一次处理的数据个数

示例:

layer {

  name: "data"

  type: "HDF5Data"

  top: "data"

  top: "label"

  hdf5_data_param {

    source:"examples/hdf5_classification/data/train.txt"

    batch_size: 10

  }

}

4、数据来自于图片

层类型:ImageData

必须设置的参数:

  source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)

  batch_size: 每一次处理的数据个数,即图片数

可选参数:

  rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。

  shuffle: 随机打乱顺序,默认值为false

  new_height,new_width: 如果设置,则将图片进行resize

 示例:

layer {

  name: "data"

  type: "ImageData"

  top: "data"

  top: "label"

  transform_param {

    mirror: false

crop_size: 227

# 剪裁一个227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪

    mean_file:"data/ilsvrc12/imagenet_mean.binaryproto"

  }

  image_data_param {

    source:"examples/_temp/file_list.txt"

    batch_size: 50

    new_height: 256

    new_width: 256

  }

}

5、数据来源于Windows

层类型:WindowData

必须设置的参数:

  source: 一个文本文件的名字

  batch_size: 每一次处理的数据个数,即图片数

示例:

layer {

  name: "data"

  type: "WindowData"

  top: "data"

  top: "label"

  include {

    phase: TRAIN

  }

  transform_param {

    mirror: true

    crop_size: 227

    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"

  }

  window_data_param {

  source:

"examples/finetune_pascal_detection/window_file_2007_trainval.txt"

    batch_size: 128

    fg_threshold: 0.5

    bg_threshold: 0.5

    fg_fraction: 0.25

    context_pad: 16

    crop_mode: "warp"

  }

}

 



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值