DeepSeek智能政务大脑:城市服务知识库构建全指南——从RAG架构到民生场景落地实践

DeepSeek赋能城市智慧升级:基于RAG架构的市民服务智能知识库构建全解

一、需求分析与技术选型

1.1 市民服务场景需求

市民服务智能知识库需要解决政务咨询效率低下、专业术语难理解、多轮对话能力弱等核心问题。系统需具备:

  • 自然语言理解能力(NLU)
  • 异构知识整合能力
  • 政策法规精准解读能力
  • 多轮对话上下文管理
  • 应急服务联动机制

1.2 DeepSeek技术栈选择

基于DeepSeek-Large语言模型构建核心系统,采用RAG(Retrieval-Augmented Generation)架构:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coderabo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值