【翻译】
维刚
这个作者很懒,什么都没留下…
展开
-
第10章-基于树的方法(2)-树的剪枝
10.8 通过剪枝得到最优规模的树之前我们讨论的都是如何生成树,接下来我们要讲解的是如何进行剪枝。我们令一个树 T 的误分类误差的期望为R∗(T)R^*(T). 回想一下,我们是用再代入误差估计,估计的R∗(T)R^*(T),即R(T)=∑t∈T′R(t)=∑t∈T′p(t)r(t)R(T)=\sum_{t∈T'}{R(t)}=\sum_{t∈T'}{p(t)r(t)}再来想一下,10.3中所讲的翻译 2016-05-17 16:47:55 · 2138 阅读 · 0 评论 -
第10章-基于树的方法(1)-生成树
原文参考:https://onlinecourses.science.psu.edu/stat857/node/22一,本章简介1,本章主要学习目标理解决策树的基本概念理解构成决策树的三个基本元素理解’不纯度’及其他度量公式的定义知道如何估计每个树节点的各个所属分类的后验概率理解基于树的分类方法的优点理解训练误差(或称再代入误差) 和 代价复杂度测量方法,知道它们的区别,以翻译 2016-05-05 21:44:49 · 3779 阅读 · 0 评论