【概率论】5-6:正态分布(The Normal Distributions Part II)

原文地址1:https://www.face2ai.com/Math-Probability-5-6-The-Normal-Distributions-P2转载请标明出处

Abstract: 本文介绍正态分布的数学性质
Keywords: The Normal Distributions

正态分布

一共要写四篇,哪来那么多废话。
首先我们要从最基础的原始的正态分布的数学原理说起

正态分布的性质 Properties of Normal Distributions

正态分布的定义 Definition

到目前为止,我们还没看到正态分布长什么样。

Definition and p.d.f. A random X has the normal distribution with mean μ \mu μ and variance σ 2 \sigma^2 σ2 ( − ∞ < μ < ∞ -\infty<\mu<\infty <μ< and σ > 0 \sigma > 0 σ>0) if X has a contimuous distribution with the following p.d.f.
f ( x ∣ μ , σ 2 ) = 1 ( 2 π ) 1 2 σ e − 1 2 ( ( x − μ ) σ ) 2 for − ∞ < x < ∞ f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty<x<\infty f(xμ,σ2)=(2π)21σ1e21(σ(xμ))2for<x<
定义对于我们来说就是个准确的命名过程。那么我们接下来要证明的是定义里说的对不对?
Theorem f ( x ∣ μ , σ 2 ) = 1 ( 2 π ) 1 2 σ e − 1 2 ( ( x − μ ) σ ) 2 for − ∞ < x < ∞ f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty < x< \infty f(xμ,σ2)=(2π)21σ1e21(σ(xμ))2for<x< is a p.d.f.

思路:证明一个表达式是不是,p.d.f.,肯定要根据p.d.f.的定义,①不能出现负数,②积分结果是1。
首先观察函数,发现其不可能出现负数,所以性质1符合p.d.f.的性质
那么接下来是求积分,并确保是1,不是说不能积分么,这里怎么做呢?
首先我们令 y = x − μ σ y=\frac{x-\mu}{\sigma} y=σxμ 那么
∫ − ∞ ∞ f ( x ∣ μ , σ 2 ) d x = ∫ − ∞ ∞ 1 ( 2 π ) 1 / 2 e − 1 2 y 2 d y we shall now let: I = ∫ − ∞ ∞ e − 1 2 y 2 d y \int^{\infty}_{-\infty}f(x|\mu,\sigma^2)dx=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{-\frac{1}{2}y^2}dy\\ \text{we shall now let:}\\ I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy f(xμ,σ2)dx=(2π)1/21e21y2dywe shall now let:I=e21y2dy
所以我们只要证明 I = ( 2 π ) 1 / 2 I=(2\pi)^{1/2} I=(2π)1/2 就算是得到结论了,但是怎么证明呢?我们用用1的特点吧,1和1相乘还是1所以我们让两个积分相乘,我们来到了二重积分的世界解决这个问题:
I 2 = I × I = ∫ − ∞ ∞ e − 1 2 y 2 d y ⋅ ∫ − ∞ ∞ e − 1 2 z 2 d z = ∫ − ∞ ∞ ∫ − ∞ ∞ e − 1 2 ( y 2 + z 2 ) d y d z to the polar coordinates  r  and  θ : I 2 = ∫ 0 2 π ∫ 0 ∞ e − 1 2 ( r 2 ) r d r d θ substitute  v = r 2 / 2 ∫ 0 ∞ e − v d v = 1 \begin {aligned} I^2&=I\times I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy \cdot \int^{\infty}_{-\infty}e^{-\frac{1}{2}z^2}dz\\ &=\int^{\infty}_{-\infty} \int^{\infty}_{-\infty}e^{-\frac{1}{2}(y^2+z^2)}dydz\\ \text{to the polar coordinates } r \text{ and } \theta :\\ I^2&=\int^{2\pi}_{0} \int^{\infty}_{0}e^{-\frac{1}{2}(r^2)}rdrd\theta \\ \text{substitute }v=r^2/2\\ &\int^{\infty}_{0}e^{-v}dv=1 \end{aligned} I2to the polar coordinates r and θ:I2substitute v=r2/2=I×I=e21y2dye21z2dz=e21(y2+z2)dydz=02π0e21(r2)rdrdθ0evdv=1

证毕。
也就证明了两个这个积分相乘的结果是1,但是我们并没有求出他的反函数。

正态分布的距生成函数 m.g.f.

m.g.f. 一旦得到相应的均值和方差就非常简单了。

Theorem Moment Generating Function.The m.g.f. of the distribution with p.d.f. given by upside is
ψ ( t ) = e μ t + 1 2 σ 2 t 2  for  − ∞ < t < ∞ \begin{aligned} \psi(t)&=e^{\mu t+\frac{1}{2}\sigma^2t^2}&\text{ for }-\infty<t<\infty \end{aligned} ψ(t)=eμt+21σ2t2 for <t<

证明上面定理的唯一办法就是我们求一下正态分布定义中那个p.d.f.的m.g.f.看结果是否一致。
ψ ( t ) = E ( e t X ) = ∫ − ∞ ∞ 1 ( 2 π ) 1 / 2 e t x − ( x − μ ) 2 2 σ 2 d x square inside the brackets: t x − ( x − μ ) 2 2 σ 2 = μ t + 1 2 σ 2 t 2 − [ x − ( μ + σ 2 t ) ] 2 2 σ 2 Therefore: ψ ( t ) = C e μ t + 1 2 σ 2 t 2 where:  C = ∫ − ∞ ∞ 1 ( 2 π ) 1 / 2 σ e − [ x − ( μ + σ 2 t ) ] 2 2 σ 2 d x \begin{aligned} \psi(t)&=E(e^{tX})=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{tx-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ \text{square inside the brackets:}\\ tx-\frac{(x-\mu)^2}{2\sigma^2}&=\mu t+\frac{1}{2}\sigma^2t^2-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}\\ \text{Therefore:}\\ \psi(t)&=Ce^{\mu t+\frac{1}{2}\sigma^2t^2}\\ \text{where: }\\ C&=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}\sigma}e^{-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}}dx \end{aligned} ψ(t)square inside the brackets:tx2σ2(xμ)2Therefore:ψ(t)where: C=E(etX)=(2π)1/21etx2σ2(xμ)2dx=μt+21σ2t22σ2[x(μ+σ2t)]2=Ceμt+21σ2t2=(2π)1/2σ1e2σ2[x(μ+σ2t)]2dx
然后我们用 μ + σ 2 t \mu+\sigma^2t μ+σ2t 替换掉 μ \mu μ 并且 C = 1 C=1 C=1 因此证明了结论的正确性
证毕。

思路是按照m.g.f.的定义,然后把里面的凑成正态分布的样子利用积分为1,化简表达式

正态分布的均值和方差 Mean and Variance

Theorem Mean and Variance.The mean and variance of the distribution with p.d.f. given by definition upside are μ \mu μ and σ 2 \sigma^2 σ2 ,repectively.

证明方法就是直接用m.g.f.求导就可以了:
ψ ′ ( t ) = ( μ + σ 2 t ) e μ t + 1 2 σ 2 t 2 ψ ′ ′ ( t ) = ( [ μ + σ 2 t ] 2 + σ 2 ) e μ t + 1 2 σ 2 t 2 Plugging  t = 0 E ( X ) = ψ ′ ( 0 ) = μ V a r ( X ) = ψ ′ ′ ( 0 ) − [ ψ ′ ( 0 ) ] 2 = σ 2 \begin{aligned} \psi'(t)&=(\mu+\sigma^2t)e^{\mu t+\frac{1}{2}\sigma^2t^2}\\ \psi''(t)&=([\mu+\sigma^2t]^2+\sigma^2)e^{\mu t +\frac{1}{2}\sigma^2t^2}\\ \text{Plugging } t=0\\ E(X)&=\psi'(0)=\mu \\ Var(X)&=\psi''(0)-[\psi'(0)]^2=\sigma^2 \end{aligned} ψ(t)ψ(t)Plugging t=0E(X)Var(X)=(μ+σ2t)eμt+21σ2t2=([μ+σ2t]2+σ2)eμt+21σ2t2=ψ(0)=μ=ψ(0)[ψ(0)]2=σ2
注意m.g.f.对于所有 t t t 都有限,所以所有正态分布的距都存在。

正态分布的形状 the Shapes of Normal Distribution

我们上面稀稀拉拉写了一些常见的性质,但是到现在我们还不知道正态分布长什么样呢?
分析p.d.f和我们已经计算出来的数字特征,我们可以总结出下面这些基本信息:

  1. 均值和中值都是 μ \mu μ
  2. f ( x ∣ μ , σ 2 ) f(x|\mu,\sigma^2) f(xμ,σ2) x = μ x=\mu x=μ 时得到最大值。
  3. 二次求导后在 μ ± σ \mu \pm \sigma μ±σ 处为0,为曲线拐点。

于是我们会得到钟形曲线:

并不是所有钟形曲线都是正态分布家族的,比如前面介绍的不存在期望的柯西分布,他的尾巴跟我们的正态分布不太一致。

线性变换 Linear Transformations

我们接着研究研究正态分布的线性变换。

Theorem If X X X has the normal distribution with mean μ \mu μ and variance σ 2 \sigma^2 σ2 and if Y = a X + b Y =aX+b Y=aX+b ,where a a a and b b b are given constants and a ≠ 0 a \neq 0 a=0 ,then Y Y Y has the normal distribution with mean a μ + b a\mu+b aμ+b and variance a 2 σ 2 a^2\sigma^2 a2σ2 .

定理给出了正态分布对应的随机变量经过线性变换后的结果,我们来计算下,证明定理的正确性。
证明:
使用m.g.f ,我们来计算 ψ Y \psi_Y ψY
ψ Y ( t ) = e b t ψ ( a t ) = e ( a μ + b ) t + 1 2 a 2 σ 2 t 2  for  − ∞ < t < ∞ \psi_Y(t)=e^{bt}\psi(at)=e^{(a\mu+b)t+\frac{1}{2}a^2\sigma^2t^2} \text{ for }-\infty <t<\infty ψY(t)=ebtψ(at)=e(aμ+b)t+21a2σ2t2 for <t<
比较正态分布的m.g.f
ψ ( t ) = e μ t + 1 2 σ 2 t 2  for  − ∞ < t < ∞ \begin{aligned} \psi(t)&=e^{\mu t+\frac{1}{2}\sigma^2t^2}&\text{ for }-\infty<t<\infty \end{aligned} ψ(t)=eμt+21σ2t2 for <t<

可以看出线性变化后的分布是一个均值为 a μ + b a\mu+b aμ+b 方差为 a 2 σ 2 a^2\sigma^2 a2σ2 那么我们得到一个新的正态分布,并且新正态分布的参数和原正态分布有关系

总结

本文主要介绍正态分布的数学性质。后面我们继续研究标准正态分布和对数正态分布。
待续。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值