最近RTX3080 / 3090发售,深度学习计算能力提升巨大,本人第一时间入手进行测试,确实氢弹级别!
使用中,最新的cuda11,cudnn,显卡驱动,tensorflow版本都需要一一对应,而tensorflow正式版还无法支持cuda11。为了让大家省点事,把踩过的坑写下来。
具体细节大家自己去百度和看各博客,这里给出一个简要的指南:
1、cuda 安装11.1 对应 cudnn安装cudnn-v8.0.4
2、nv驱动只能用 最新的456.43
3、python 可以使用3.7 3.8均可 可用anaconda安装
4、tensorflow 安装最新的nightly版本 https://pypi.org/project/tf-nightly-gpu/ (2.4.0 dev版本)
pip install tf-nightly-gpu
5、如果tensorflow提示缺失cusolver64_10.dll 请上网搜索,找到以后复制到C:\Windows\System32 目录,也可以在之前版本的cuda目录中去拷贝,“_10”代表了10.0版本,如果是“cusolver64_100.dll”,可以重命名删除掉一个0,再拷贝,效果一样。目录一般在“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v1x.x\bin”,可以在其他电脑或者以前安装的版本中拷贝。除了这个文件,可能还有缺失其他文件,但是 按照我的安装步骤,只会提醒该文件缺失。
6、可以用这个工程测试,比较轻量化,数据集也有下载
[Polyp-Segmentation-using-UNET-in-TensorFlow-2.0]
本文提供了一套详细的RTX3080/3090显卡在深度学习领域的配置流程,包括cuda11.1、cudnn8.0.4、nv最新驱动456.43、python3.7/3.8及tensorflow nightly版本的兼容性匹配方案。特别注意,tensorflow正式版暂不支持cuda11,需安装nightly版本。
2476

被折叠的 条评论
为什么被折叠?



