
人工智能与机器学习
文章平均质量分 80
且听风吟☆
这个作者很懒,什么都没留下…
展开
-
人工智能与机器学习学习笔记(五):卷积神经网络图像分类
文章目录一、环境准备二、猫狗数据集实例练习2.1 对数据集进行基本的处理2.2 搭建卷积神经网络模型一、环境准备安装Anaconda、Jupyter notebook配置Anaconda的keras和tensorflow环境打开Jupyter notebook的终端,输入以下命令pip install keraspip install tensorflow下载猫狗数据集提取码:dmp4二、猫狗数据集实例练习2.1 对数据集进行基本的处理import os, shutil原创 2021-06-18 15:37:22 · 307 阅读 · 0 评论 -
人工智能与机器学习学习笔记(五):信息熵与压缩编码基础
文章目录一、信息熵一、信息熵在机器学习中,绕不开的一个概念就是熵 (Entropy),信息熵。信息熵常被用来作为一个系统的信息含量的量化指标,从而可以进一步用来作为系统方程优化的目标或者参数选择的判据。在决策树的生成过程中,就使用了熵来作为样本最优属性划分的判据。信息熵的定义公式:H(X)=−∑i=1np(xi)logp(xi)H(X)=-\sum_{i=1 } ^{n} p(x_i)logp(x_i) H(X)=−i=1∑np(xi)logp(xi)信息量度量的是一个具体事件发原创 2021-05-27 15:48:49 · 785 阅读 · 0 评论 -
人工智能与机器学习学习笔记(四)
文章目录一、Python矩阵基本运算1.1 Python中的矩阵基本操作1.2 Python中的矩阵乘法二、梯度下降法基础三、梯度下降法求解线性回归一、Python矩阵基本运算1.1 Python中的矩阵基本操作导入numpy包,用 mat() 函数创建一个2*3的矩阵 aimport numpy as npa=np.mat([[1,2,3],[4,5,6]])a结果用 a.shape 获取矩阵大小用 a.T 转置该矩阵用 a.transpose 行列转换用二维数组 b 代替原创 2021-04-05 22:26:05 · 196 阅读 · 0 评论 -
人工智能与机器学习学习笔记(三)
用python编程处理线性和非线性规划问题线性规划的基本思想为求解决策变量,需要将目标函数、约束条件表达为决策变量的函数式,若约束条件和目标函数都是线性的,即表示约束条件的数学式子都是线性等式或线性不等式,表示问题最优化指标的目标函数都昌线性函数,则该问题就是线性规划的问题。例如,在前面某工厂生产资源配置的问题中,设商品A和商品B的产量分别为x1和x2,则有决策变量:x1和x2。目标函数(subject to,简称s.t.)﹔利润L=2x1+32最大化,记为max(L)=2x1原创 2021-04-01 20:31:26 · 265 阅读 · 0 评论 -
人工智能与机器学习学习笔记(二)
文章目录一、鸢尾花数据集分类二、可视化显示一、鸢尾花数据集分类鸢尾花数据集以鸢尾花的特征作为数据来源,数据集包含150个数据集,有4维,分为3类(setosa、versicolour、virginica),每类50个数据,每个数据包含4个属性,花萼长度、宽度和花瓣长度、宽度软件及使用方法请查看上一篇文章选择分类代码:from sklearn import datasetsimport matplotlib.pyplot as pltimport numpy as npimport ma原创 2021-03-26 18:09:29 · 212 阅读 · 3 评论 -
人工智能与机器学习学习笔记(一)
文章目录一、准备工作二、用“父母子女身高”数据进行线性回归分析“任务与要求”:线性回归练习。“父亲高则儿子高,父亲矮则儿子矮”(即父亲与儿子身高相关,且为正相关)、“母高高一窝,父高高一个”(即母亲的身高比父亲的身高对子女的影响更大)的习俗传说是否成立?请在“父母子女身高”数据集(高尔顿数据集)基础上利用线性回归做出科学分析。选取父子身高数据为X-Y,用Excel计算线性回归方程和相关系数、方差、p值等,判断回归方程是否成立。 现在如果有一个新家庭的数据,已知父亲身高75英寸,请测算儿子的身高为多原创 2021-03-20 22:24:57 · 277 阅读 · 0 评论