人工智能与机器学习学习笔记(五):卷积神经网络图像分类

本文记录了使用Anaconda和Tensorflow环境进行卷积神经网络(CNN)的学习,通过猫狗数据集进行实例操作,包括数据预处理和模型搭建。在数据预处理阶段,确保了训练、验证和测试数据的平衡。但在模型搭建过程中遇到了未知错误,可能与包的问题有关,目前问题尚未解决。
摘要由CSDN通过智能技术生成

一、环境准备

  1. 安装Anaconda、Jupyter notebook
  2. 配置Anaconda的keras和tensorflow环境
    打开Jupyter notebook的终端,输入以下命令

pip install keras
pip install tensorflow

  1. 下载猫狗数据集
    提取码:dmp4
    在这里插入图片描述

二、猫狗数据集实例练习

2.1 对数据集进行基本的处理

需要保证以下两个文件存在
在这里插入图片描述

import os, shutil
#训练数据路径
original_dataset_dir = 'D:/python_project/kaggle_Dog&Cat/train'

#分类好后的路径
base_dir = 'D:/python_project/kaggle_Dog&Cat/find_cats_and_dogs'
os.mkdir(base_dir)

# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# Directory with our validation cat pictures
test_cats_dir 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值