15.容错机制、Checkpoint和State、执行流程、状态后端/存储介质、State状态后端/State存储介质、可选的状态存储方式、状态恢复和重启策略、自动重启策略和恢复、Savepoint

本文来自:Flink1.12-2021黑马程序员贺岁视频 的学习笔记

15.容错机制
15.1.Checkpoint
15.1.1.Checkpoint和State
15.1.2.Checkpoint执行流程
15.1.3.状态后端/存储介质
15.1.3.1.State状态后端/State存储介质
15.1.3.2.可选的状态存储方式–MemoryStateBackend
15.1.3.3.可选的状态存储方式–FsStateBackend
15.1.3.4.可选的状态存储方式–RocksDBStateBackend
15.1.4.Checkpoint代码演示
15.2.状态恢复和重启策略
15.2.1.自动重启策略和恢复
15.2.2.手动重启-半自动-了解
15.3.Savepoint–全手动–了解
15.3.1.Savepoint VS Checkpoint
15.3.2.演示

15.容错机制

15.1.Checkpoint

15.1.1.Checkpoint和State

State
维护/存储的是某一个Operator的运行的状态/历史值,是维护在内存中!

一般指一个具体的Operator的状态(operator的状态表示一些算子在运行的过程中会产生的一些历史结果,如前面的maxBy底层会维护当前的最大值,也就是会维护一个keyedOperator,这个State里面存放就是maxBy这个Operator中的最大值)。

State数据默认保存在Java的堆内存中/TaskManager节点的内存中。
State可以被记录,在失败的情况下数据还可以恢复。

Checkpoint
某一时刻,Flink中所有的Operator的当前State的全局快照,一般存在磁盘上。
表示一个Flink Job在一个特定时刻的一份全局状态快照,即包含了所有Operator的状态。
可以理解为Checkpoint是把State数据定时持久存储了。
比如KafkaConsumer算子中维护的Offset状态,当任务重新恢复的时候可以从Checkpoint中获取。

15.1.2.Checkpoint执行流程

在这里插入图片描述
0.Flink的JobManager创建CheckpointCoordinator
1.Coordinator向所有的SourceOperator发送Barrier栅栏(理解为执行Checkpoint的信号)
2.SourceOperator接收到Barrier之后,暂停当前的操作(暂停的时间很短,因为后续的写快照是异步的),并制作State快照, 然后将自己的快照保存到指定的介质中(如HDFS), 一切 ok之后向Coordinator汇报并将Barrier发送给下游的其他Operator
3.其他的如TransformationOperator接收到Barrier,重复第2步,最后将Barrier发送给Sink
4.Sink接收到Barrier之后重复第2步
5.Coordinator接收到所有的Operator的执行ok的汇报结果,认为本次快照执行成功

Flink中的Checkpoint底层使用了Chandy-Lamport algorithm分布式快照算法可以保证数据的在分布式环境下的一致性!

https://zhuanlan.zhihu.com/p/53482103

Chandy-Lamport algorithm算法的作者也是ZK中Paxos 一致性算法的作者.

https://www.cnblogs.com/shenguanpu/p/4048660.html

Flink中使用Chandy-Lamport algorithm分布式快照算法取得了成功,后续Spark的StructuredStreaming也借鉴了该算法.

15.1.3.状态后端/存储介质

15.1.3.1.State状态后端/State存储介质

注意:
前面学习了Checkpoint其实就是Flink中某一时刻,所有的Operator的全局快照,那么快照应该要有一个地方进行存储,而这个存储的地方叫做状态后端。

Flink中的State状态后端有很多种:

15.1.3.2.可选的状态存储方式–MemoryStateBackend

在这里插入图片描述

15.1.3.3.可选的状态存储方式–FsStateBackend

在这里插入图片描述

15.1.3.4.可选的状态存储方式–RocksDBStateBackend

在这里插入图片描述
所需的依赖:

<dependency>
   <groupId>org.apache.flink</groupId>
   <artifactId>flink-statebackend-rocksdb_2.12</artifactId>
   <version>1.12.0</version>
</dependency>

15.1.4.Checkpoint代码演示

在这里插入图片描述
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/checkpointing.html

package day4;

import org.apache.commons.lang.SystemUtils;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.util.Collector;

import java.util.Properties;

/**
 * @author tuzuoquan
 * @date 2022/5/30 21:32
 */
public class CheckpointDemo01 {

    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO ===========Checkpoint参数设置====
        //===========类型1:必须参数=============
        //设置Checkpoint的时间间隔为1000ms做一次Checkpoint/其实就是每隔1000ms发一次Barrier!
        env.enableCheckpointing(1000);
        //设置State状态存储介质/状态后端
        //Memory:State存内存,Checkpoint存内存--开发不用!
        //Fs:State存内存,Checkpoint存FS(本地/HDFS)--一般情况下使用
        //RocksDB:State存RocksDB(内存+磁盘),Checkpoint存FS(本地/HDFS)--超大状态使用,但是对于状态的读写效率要低一点
        /*if(args.length > 0){
            env.setStateBackend(new FsStateBackend(args[0]));
        } else {
            env.setStateBackend(new FsStateBackend("file:///D:\\data\\ckp"));
        }*/
        if (SystemUtils.IS_OS_WINDOWS) {
            env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        } else {
            env.setStateBackend(new FsStateBackend("hdfs://node1:8020/flink-checkpoint/checkpoint"));
        }
        //===========类型2:建议参数===========
        //设置两个Checkpoint 之间最少等待时间,如设置Checkpoint之间最少是要等 500ms(为了避免每隔1000ms做一次Checkpoint的时候,前一次太慢和后一次重叠到一起去了)
        //如:高速公路上,每隔1s关口放行一辆车,但是规定了两车之前的最小车距为500m
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);//默认是0
        //设置如果在做Checkpoint过程中出现错误,是否让整体任务失败:true是  false不是
        //env.getCheckpointConfig().setFailOnCheckpointingErrors(false);//默认是true
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(10);//默认值为0,表示不容忍任何检查点失败
        //设置是否清理检查点,表示 Cancel 时是否需要保留当前的 Checkpoint,默认 Checkpoint会在作业被Cancel时被删除
        //ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION:true,当作业被取消时,删除外部的checkpoint(默认值)
        //ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:false,当作业被取消时,保留外部的checkpoint
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //===========类型3:直接使用默认的即可===============
        //设置checkpoint的执行模式为EXACTLY_ONCE(默认)
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //设置checkpoint的超时时间,如果 Checkpoint在 60s内尚未完成说明该次Checkpoint失败,则丢弃。
        env.getCheckpointConfig().setCheckpointTimeout(60000);//默认10分钟
        //设置同一时间有多少个checkpoint可以同时执行
        //env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//默认为1

        //2.Source
        DataStream<String> linesDS = env.socketTextStream("node1", 9999);

        //3.Transformation
        //3.1切割出每个单词并直接记为1
        DataStream<Tuple2<String, Integer>> wordAndOneDS = linesDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                //value就是每一行
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });
        //3.2分组
        //注意:批处理的分组是groupBy,流处理的分组是keyBy
        KeyedStream<Tuple2<String, Integer>, String> groupedDS = wordAndOneDS.keyBy(t -> t.f0);
        //3.3聚合
        DataStream<Tuple2<String, Integer>> aggResult = groupedDS.sum(1);

        DataStream<String> result = (SingleOutputStreamOperator<String>) aggResult.map(new RichMapFunction<Tuple2<String, Integer>, String>() {
            @Override
            public String map(Tuple2<String, Integer> value) throws Exception {
                return value.f0 + ":::" + value.f1;
            }
        });

        //4.sink
        result.print();

        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "node1:9092");
        FlinkKafkaProducer<String> kafkaSink = new FlinkKafkaProducer<>("flink_kafka", new SimpleStringSchema(), props);
        result.addSink(kafkaSink);

        //5.execute
        env.execute();

        // /export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic flink_kafka
    }
}

15.2.状态恢复和重启策略

15.2.1.自动重启策略和恢复

重启策略分类

  • 默认重启策略
  • 无重启策略
  • 固定延迟重启策略—开发中使用
  • 失败率重启策略–开发偶尔使用
import org.apache.commons.lang3.SystemUtils;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.util.Collector;

import java.util.Properties;
import java.util.concurrent.TimeUnit;

/**
 * Desc 演示Flink-Checkpoint+重启策略实现状态恢复
 *
 * @author tuzuoquan
 * @date 2022/6/1 0:15
 */
public class CheckpointDemo02_Restart {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO ===========Checkpoint参数设置====
        //===========类型1:必须参数=============
        //设置Checkpoint的时间间隔为1000ms做一次Checkpoint/其实就是每隔1000ms发一次Barrier!
        env.enableCheckpointing(1000);
        //设置State状态存储介质/状态后端
        //Memory:State存内存,Checkpoint存内存--开发不用!
        //Fs:State存内存,Checkpoint存FS(本地/HDFS)--一般情况下使用
        //RocksDB:State存RocksDB(内存+磁盘),Checkpoint存FS(本地/HDFS)--超大状态使用,但是对于状态的读写效率要低一点
        /*if(args.length > 0){
            env.setStateBackend(new FsStateBackend(args[0]));
        }else {
            env.setStateBackend(new FsStateBackend("file:///D:\\data\\ckp"));
        }*/
        if (SystemUtils.IS_OS_WINDOWS) {
            env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
        } else {
            env.setStateBackend(new FsStateBackend("hdfs://node1:8020/flink-checkpoint/checkpoint"));
        }
        //===========类型2:建议参数===========
        //设置两个Checkpoint 之间最少等待时间,如设置Checkpoint之间最少是要等 500ms(为了避免每隔1000ms做一次Checkpoint的时候,前一次太慢和后一次重叠到一起去了)
        //如:高速公路上,每隔1s关口放行一辆车,但是规定了两车之前的最小车距为500m
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);//默认是0
        //设置如果在做Checkpoint过程中出现错误,是否让整体任务失败:true是  false不是
        //env.getCheckpointConfig().setFailOnCheckpointingErrors(false);//默认是true
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(10);//默认值为0,表示不容忍任何检查点失败
        //设置是否清理检查点,表示 Cancel 时是否需要保留当前的 Checkpoint,默认 Checkpoint会在作业被Cancel时被删除
        //ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION:true,当作业被取消时,删除外部的checkpoint(默认值)
        //ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:false,当作业被取消时,保留外部的checkpoint
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //===========类型3:直接使用默认的即可===============
        //设置checkpoint的执行模式为EXACTLY_ONCE(默认)
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //设置checkpoint的超时时间,如果 Checkpoint在 60s内尚未完成说明该次Checkpoint失败,则丢弃。
        env.getCheckpointConfig().setCheckpointTimeout(60000);//默认10分钟
        //设置同一时间有多少个checkpoint可以同时执行
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//默认为1

        //TODO ===配置重启策略:
        //1.配置了Checkpoint的情况下不做任务配置:默认是无限重启并自动恢复,可以解决小问题,但是可能会隐藏真正的bug
        //2.单独配置无重启策略
        //env.setRestartStrategy(RestartStrategies.noRestart());
        //3.固定延迟重启--开发中常用
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
                3, // 最多重启3次数
                Time.of(5, TimeUnit.SECONDS) // 重启时间间隔
        ));
        //上面的设置表示:如果job失败,重启3次, 每次间隔5s
        //4.失败率重启--开发中偶尔使用
        /*env.setRestartStrategy(RestartStrategies.failureRateRestart(
                3, // 每个测量阶段内最大失败次数
                Time.of(1, TimeUnit.MINUTES), //失败率测量的时间间隔
                Time.of(3, TimeUnit.SECONDS) // 两次连续重启的时间间隔
        ));*/
        //上面的设置表示:如果1分钟内job失败不超过三次,自动重启,每次重启间隔3s (如果1分钟内程序失败达到3次,则程序退出)


        //2.Source
        DataStream<String> linesDS = env.socketTextStream("node1", 9999);

        //3.Transformation
        //3.1切割出每个单词并直接记为1
        DataStream<Tuple2<String, Integer>> wordAndOneDS = linesDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                //value就是每一行
                String[] words = value.split(" ");
                for (String word : words) {
                    if (word.equals("bug")) {
                        System.out.println("bug.....");
                        throw new Exception("bug.....");
                    }
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });
        //3.2分组
        //注意:批处理的分组是groupBy,流处理的分组是keyBy
        KeyedStream<Tuple2<String, Integer>, String> groupedDS = wordAndOneDS.keyBy(t -> t.f0);
        //3.3聚合
        DataStream<Tuple2<String, Integer>> aggResult = groupedDS.sum(1);

        DataStream<String> result = (SingleOutputStreamOperator<String>) aggResult.map(new RichMapFunction<Tuple2<String, Integer>, String>() {
            @Override
            public String map(Tuple2<String, Integer> value) throws Exception {
                return value.f0 + ":::" + value.f1;
            }
        });

        //4.sink
        result.print();

        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "node1:9092");
        FlinkKafkaProducer<String> kafkaSink = new FlinkKafkaProducer<>("flink_kafka", new SimpleStringSchema(), props);
        result.addSink(kafkaSink);

        //5.execute
        env.execute();

        // /export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic flink_kafka
    }
}

15.2.2.手动重启-半自动-了解

1.打包-要大的里面用到了kafka
2.启动Flink集群
3.上传jar包配置并提交
http://node1:8081/#/submit
在这里插入图片描述
4.发送单词并观察hdfs目录
5.取消任务
在这里插入图片描述
6.重新提交任务并指定从指定的ckp目录恢复状态接着计算
hdfs://node1:8020/flink-checkpoint/checkpoint/acb9071752276e86552a30fda41e021c/chk-100
在这里插入图片描述
7.继续发送数据发现可以恢复从之前的状态继续计算

15.3.Savepoint–全手动–了解

15.3.1.Savepoint VS Checkpoint

Savepoint介绍
就是手动的Checkpoint

Savepoint:保存点,类似于以前玩游戏的时候,遇到难关了/遇到boss了,赶紧手动存个档,然后接着玩,如果失败了,赶紧从上次的存档中恢复,然后接着玩。

在实际开发中,可能会遇到这样的情况:如果对集群进行停机维护/扩容…

那么这时候需要执行一次Savepoint也就是执行一次手动的Checkpoint/也就是手动的发一个barrier栅栏,那么这样的话,程序的所有状态都会被执行快照并保存。

当维护/扩容完毕之后,可以从上一次Savepoint的目录中进行恢复。
在这里插入图片描述

15.3.2.演示

# 启动yarn session
/export/server/flink/bin/yarn-session.sh -n 2 -tm 800 -s 1 -d

# 运行job-会自动执行Checkpoint
/export/server/flink/bin/flink run --class cn.xxxx.checkpoint.CheckpointDemo01 /root/ckp.jar

# 手动创建savepoint--相当于手动做了一次Checkpoint
/export/server/flink/bin/flink savepoint 0e921a10eb31bb0983b637929ec87a8a hdfs://node1:8020/flink-checkpoint/savepoint/

# 停止job
/export/server/flink/bin/flink cancel 0e921a10eb31bb0983b637929ec87a8a

# 重新启动job,手动加载savepoint数据
/export/server/flink/bin/flink run -s hdfs://node1:8020/flink-checkpoint/savepoint/savepoint-0e921a-1cac737bff7a --class cn.xxxx.checkpoint.CheckpointDemo01 /root/ckp.jar 

# 停止yarn session
yarn application -kill application_1607782486484_0014
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涂作权的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值