显著性检测
老司机的诗和远方
非1即0!
展开
-
图像显著性检测
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型。 C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985.转载 2017-10-17 20:38:46 · 1952 阅读 · 0 评论 -
语义分割
一 . Semantic Segmentation 定义和特点 作为传统的计算机视觉领域的经典问题,Semantic Segmentation 语义分割是分割问题研究的热门问题。具体来说,我们的目标是对于图像中所有像素点分配给其对应的标签(区别于Object Detection 和 Localization),但是语义分割和Instance Segmentation 分割的最主转载 2017-10-18 09:18:36 · 3025 阅读 · 3 评论 -
ICCV2017关于GAN和semantic文章
ICCV 2017文章(http://openaccess.thecvf.com/ICCV2017.py) 1、关于semantic Visual Semantic Planning Using Deep Successor Representations Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox,原创 2017-10-18 22:10:20 · 4104 阅读 · 0 评论 -
semantic segmentation paper
[1]Fully Convolutional Networks for Semantic Segmentation [2]Learning Deconvolution Network for Semantic Segmentation [3]Efficient Inference in Fully Connected CRFs with Gaussian Edge转载 2017-10-19 19:30:36 · 410 阅读 · 0 评论 -
DL实现semantic segmentation
最近总结了一下语义分割相关的文章。 这是我在一篇文章(deconvolution network)中看到的近期一些方法的评估表: 下面谈到的一些文章整理都是关于以上的方法。 1、 FCN8s 文章出处:CVPR2015-FullyConvolutional Networks for Semantic Segmentation CNN对分类问题的效果非常好,转载 2017-10-22 15:33:29 · 856 阅读 · 0 评论 -
Awesome Semantic Segmentation
Awesome Semantic Segmentation Networks by architecture Semantic segmentation U-Net [https://arxiv.org/pdf/1505.04597.pdf] https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/转载 2017-10-22 22:03:39 · 2763 阅读 · 0 评论 -
视觉的显著性
1、先要明白什么是视觉的显著性。我们人眼在看一幅场景的时候,首先会被该场景中最‘刺眼’或者最‘引人注目’的某一个局部所吸引,虽然该过程对我们来说瞬间发生,再简单不过了,但这个过程要想明白到底发生了什么其实还是挺麻烦的。这个局部就是该视觉场景中最显著的区域。所以视觉显著性检测其实就是让计算机模拟人或灵长类生物在这一瞬间所做的工作,即如何从一整幅视觉场景中找到最‘引人注目’的局部。 2、明白了什转载 2017-10-24 16:30:49 · 2166 阅读 · 0 评论 -
显著性检测的四种经典方法
最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以下将研究的一些收获和经验共享。 先从最简单的最容易实现的算法说起吧: 1、 LC算法 参考论文:Visual Attention Detection in Video Sequences Using Spatiotemporal Cues。 Yun Zhai and Mubarak Shah. Pag转载 2017-12-05 10:01:58 · 50899 阅读 · 13 评论 -
显著性检测研究思路和方法
显著性检测最近几年成了研究热点,从计算机视觉三大会议(ICCV, CVPR, ECCV)上的文章数量就可以看出,大概每届会议都有10来篇的样子,一个这么小的topic,10来篇数量已经很多了。如果你看一看这些文章就会发现,显著目标检测的占了大部分,眼动点预测的很少,大概就一两篇。看到这,有些人也许还不明白显著目标检测和眼动点预测区别。其实,显著目标检测就类似于一个二值分割问题,只不过加了显著这个条转载 2017-12-05 10:33:41 · 1080 阅读 · 0 评论