力扣977-有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
暴力解法-for循环遍历数组中所有元素,对元素进行平方,再使用快速排序对数组进行排序
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
for(int i=0;i<nums.size();i++) //遍历数组中所有元素
{
nums[i]*=nums[i]; //每个元素进行平方
}
sort(nums.begin(),nums.end()); //快速排序,重新对数组进行排序
return nums; //返回数组
}
};
双指针解法-题目是有序数组,存在负数,负数的平方可能大于正数的平方,因此存在左右边界。对于左右边界,可以采用双指针解法,分别计算左边界和右边界的平方的值,对比之后,将较大的值存入新数组,然后改变对应的边界的值和新数组的下标。
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
int k=nums.size()-1;
// 创建一个新数组,有nums.size()个为0的元素
vector<int> result(nums.size(),0);
//定于数组左右边界的指针i,j
for(int i=0,j=nums.size()-1;i<=j;)
{
//如果右边界的元素的平方较大,则写入新数组,并改变右边界和新数组下标
if(nums[i]*nums[i]<nums[j]*nums[j])
{
//写入新数组,然后改变新数组下标
result[k--]=nums[j]*nums[j];
//改变右边界
j--;
}
//如果左边界的元素的平方较大,则写入新数组,并改变左边界和新数组下标
else
{
//写入新数组,然后改变新数组下标
result[k--]=nums[i]*nums[i];
//改变左边界
i++;
}
}
return result; //返回新数组
}
};
力扣209-长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
暴力解法- 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result=INT32_MAX; //定义结果为int型最大值
int sum=0; //子序列之和
int len_result=0; //子序列的长度
for(int i=0;i<nums.size();i++) //第一层循环
{
sum=0; //重置子序列之和
for(int j=i;j<nums.size();j++) //第二层循环,从i开始的子序列
{
sum+=nums[j]; //从i开始到j的子序列之和
if(sum>=target) //大于目标值
{
len_result=j-i+1; //计算子序列长度
//如果结果小于子序列长度,则结果不变,反之,结果等于子序列长度
result=result<len_result?result:len_result;
break; //跳出循环
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
滑动窗口-双指针解法,i为滑动窗口起始位置,j为滑动窗口终止位置,从i为0开始计算到j的子序列之和,当sum大于等于目标值时,循环判断sum是否大于target,计算滑动窗口长度并改变滑动窗口的起始位置(i+1),同时之前计算得出的sum要减掉数组中i的值(nums[i])。例如数组为{1,1,1,1,1,100},target为100,第一个满足条件的子序列是从0-5,sum为105,长度为6;滑动窗口就不改变终止位置,改变起始位置,第二个子序列就是从1-5,sum为104,长度为5。当当前子序列sum之和不大于target时,则j+1,即滑动窗口的终止位置向后移动,sum+=nums[j],直到sum大于target,然后又会移动滑动窗口的起始位置。
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result=INT32_MAX; //定义结果为int型最大值
int sum=0; //子序列之和
int len_result=0; //子序列的长度
int i=0; //滑动窗口起始位置
for(int j=0;j<nums.size();j++) //滑动窗口终止位置
{
sum+=nums[j]; //子序列之和
while(sum>=target) //循环判断sum是否大于target
{
//计算子序列长度
len_result=j-i+1;
//如果结果小于子序列长度,则结果不变,反之,结果等于子序列长度
result = result < len_result ? result : len_result;
//改变滑动窗口起始位置,i加1,子序列就从i的下一位开始计算,因此sum要减去nums[i]
sum=sum-nums[i];
i++;
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
力扣59-螺旋矩阵
给你一个正整数 n ,生成一个包含 1 到 n x n 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
坚持循环不变量原则,坚持了每条边左闭右开的原则。处理矩阵边的时候最后一个点留给下一条边处理。
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx=0,starty=0; // 定义每循环一个圈的起始位置
// 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int loop = n / 2;
// 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int mid = n / 2;
int count=1; // 用来给矩阵中每一个空格赋值
int offset=1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
while(loop--)
{
int i=startx;
int j=starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for(j=starty;j<n-offset;j++)
{
res[starty][j]=count++;
}
//此时,j等于n-offset,即上行的最后一个空格
// 模拟填充右列从上到下(左闭右开)
for(i=startx;i<n-offset;i++)
{
res[i][j]=count++;
}
//此时i,j是矩阵右下角的值,即(n-offset,n-offset)
// 模拟填充下行从右到左(左闭右开)
for(;j>starty;j--)
{
res[i][j]=count++;
}
//此时,j为循环矩阵的左下角的空格
// 模拟填充左列从下到上(左闭右开)
for(;i>startx;i--)
{
res[i][j]=count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
offset++;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};