吴恩达深度学习第一课第三周编程作业详解

本次作业目标

建立具有一个隐藏曾的平面数据分类器

欢迎参加第三周的编程作业!是时候建立你的第一个神经网络了,它将有一个隐藏层。现在,您将注意到这个模型和您以前使用logistic回归实现的模型之间有很大的区别。

在本次作业结束时,您将能够:

-实现了一个单隐层二类分类神经网络
-使用具有非线性激活函数的单位,例如tanh
-计算交叉熵损失
-实现正向和反向传播

1-包装

首先导入此任务期间需要的所有包。

-numpy是使用Python进行科学计算的基本包。
-sklearn为数据挖掘和数据分析提供了简单高效的工具。
-matplotlib是一个用Python绘制图形的库。
-testCases提供了一些测试示例来评估函数的正确性
-planar_utils提供了用于此赋值的各种有用函数
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases_v2 import *
from public_tests import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(2) # set a seed so that the results are consistent

%load_ext autoreload
%autoreload 2

2-加载数据集

现在,加载要处理的数据集。下面的代码将“flower”2类数据集加载到变量X和Y中。

X, Y = load_planar_dataset()

使用matplotlib可视化数据集。数据看起来像一朵“花”,有一些红色(标签y=0)和一些蓝色(y=1)点。你的目标是建立一个模型来适应这些数据。换句话说,我们希望分类器将区域定义为红色或蓝色。

#将数据可视化
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

运行结果为展示图片
在这里插入图片描述
您有:

-包含特征的numpy数组(矩阵)X(x1,x2)
-包含标签的numpy数组(向量)Y (red:0, blue:1).

首先,更好地了解您的数据是什么样子的。

练习1

你有多少个训练的例子?另外,变量X和Y的形状是什么?
提示:如何获得numpy数组的形状(帮助

# (≈ 3 lines of code)
# shape_X = ...
# shape_Y = ...
# training set size
# m = ...
# YOUR CODE STARTS HERE
shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1]
# YOUR CODE ENDS HERE

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))

运行结果:

The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

由运算结果可知,X是一个2行400列的矩阵,Y是一个1行400列的向量,训练集大小为400

3-简单逻辑回归

在建立一个完整的神经网络之前,让我们检查一下logistic回归如何处理这个问题。您可以使用sklearn的内置函数来实现这一点。运行下面的代码在数据集上训练logistic回归分类器。

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);

现在可以绘制这些模型的决策边界了!运行下面的代码。

# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")

# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
       '% ' + "(percentage of correctly labelled datapoints)")

逻辑回归的准确性:47%(正确标记数据点的百分比)
在这里插入图片描述
解释:数据集不是线性可分的,所以逻辑回归的表现不好。希望神经网络能做得更好。我们现在就试试这个!

4-神经网络模型

Logistic回归在花卉数据集上效果不佳。下一步,你将训练一个带有一个隐藏层的神经网络,看看它是如何处理同样的问题的。
模型:
在这里插入图片描述
数学上:
举个例子𝑥(𝑖) :
在这里插入图片描述
根据对所有例子的预测,您还可以计算成本𝐽 具体如下:
在这里插入图片描述
提醒:建立神经网络的一般方法是:

1.定义神经网络结构(输入单元的#和隐藏单元的#等)。
2.初始化模型参数
3.回路:
	-实现前向传播
	-计算损失
	-实现反向传播以获得梯度
	-更新参数(梯度下降)

实际上,您通常会构建helper函数来计算步骤1-3,然后将它们合并到一个名为nn_model()的函数中。一旦构建了nn_model()并学习了正确的参数,就可以对新数据进行预测。

4.1-定义神经网络结构

练习2-图层大小

定义三个变量:

-n_x:输入层的大小
-n_h:隐藏层的大小(设置为4)
-n_y:输出层的大小

提示:使用X和Y的形状来查找n_x和n_y。另外,硬编码隐藏层大小为4。

# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)
    
    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """
    #(≈ 3 lines of code)
    # n_x = ... 
    # n_h = ...
    # n_y = ... 
    # YOUR CODE STARTS HERE
    n_x = X.shape[0]
    n_y = Y.shape[0]
    n_h = 4
    # YOUR CODE ENDS HERE
    return (n_x, n_h, n_y)

t_X, t_Y = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(t_X, t_Y)
print("The size of the input layer is: n_x = " + str(n_x))
print("The size of the hidden layer is: n_h = " + str(n_h))
print("The size of the output layer is: n_y = " + str(n_y))

layer_sizes_test(layer_sizes)

运行结果:

The size of the input layer is: n_x = 5
The size of the hidden layer is: n_h = 4
The size of the output layer is: n_y = 2
 All tests passed.

4.2-初始化模型参数

练习3-初始化参数

实现函数initialize_parameters()。
说明:

·确保参数大小正确。如果需要,请参考上面的神经网络图。
·您将使用随机值初始化权重矩阵。
	·使用:np.random.randn(a,b)*0.01随机初始化形状(a,b)的矩阵。
·将偏移向量初始化为零。
	·用法:np.zeros((a,b))用零初始化形状(a,b)的矩阵。
# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer
    
    Returns:
    params -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """
    
    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
    
    #(≈ 4 lines of code)
    # W1 = ...
    # b1 = ...
    # W2 = ...
    # b2 = ...
    # YOUR CODE STARTS HERE
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))  
    # YOUR CODE ENDS HERE

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters
n_x, n_h, n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x, n_h, n_y)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

initialize_parameters_test(initialize_parameters)

运行结果为:

W1 = [[-0.00416758 -0.00056267]
 [-0.02136196  0.01640271]
 [-0.01793436 -0.00841747]
 [ 0.00502881 -0.01245288]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
b2 = [[0.]]
 All tests passed.

4.3-回路

练习4-向前传播

使用以下公式实现前向传播:
在这里插入图片描述
说明:

检查上图中分类器的数学表示。
·使用函数sigmoid()。这本笔记本内置了它。
·使用函数np.tanh()。它是numpy图书馆的一部分。
·使用以下步骤实施:
	1.从字典“parameters”中检索每个参数(这是initialize_parameters()的输出,使用parameters[“.”]。
	2.实现正向传播。计算𝑍[1],𝐴[1],𝑍[2] 以及𝐴[2] (训练集中所有例子的所有预测向量)。
·反向传播所需的值存储在“缓存”中。缓存将作为反向传播函数的输入。
# GRADED FUNCTION:forward_propagation

def forward_propagation(X, parameters):
    """
    参数:
	X——输入数据的大小(n_x,m)
	参数——包含参数的python字典(初始化函数的输出)
	返回:
	A2——第二次激活的sigmoid输出
	cache—包含“Z1”、“A1”、“Z2”和“A2”的字典
    """
    # Retrieve each parameter from the dictionary "parameters"
    #(≈ 4 lines of code)
    # W1 = ...
    # b1 = ...
    # W2 = ...
    # b2 = ...
    # YOUR CODE STARTS HERE
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]  
    # YOUR CODE ENDS HERE
    
    # Implement Forward Propagation to calculate A2 (probabilities)
    # (≈ 4 lines of code)
    # Z1 = ...
    # A1 = ...
    # Z2 = ...
    # A2 = ...
    # YOUR CODE STARTS HERE
    Z1 = np.dot(W1,X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,A1) + b2
    A2 = sigmoid(Z2)
    # YOUR CODE ENDS HERE
    
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache

运行结果:

A2 = [[0.21292656 0.21274673 0.21295976]]
 All tests passed.

4.4-计算成本

既然你已经计算过𝐴[2](在Python变量“A2”中),它包含𝑎[2] (𝑖) 对于所有示例,可以按如下方式计算成本函数:
在这里插入图片描述

练习5-计算成本

实现compute_cost()来计算成本的值𝐽 .
说明:

实现交叉熵损失的方法有很多种。这是一种不使用for循环实现公式一部分的方法:在这里插入图片描述
logprobs=np.multiply(np.log(A2),Y)
cost =-np.sum(logprobs)
用它来构建成本函数的整个表达式。
笔记:

可以使用np.multiply()和np.sum(),也可以直接使用np.dot()。
如果使用np.multiply后跟np.sum,则最终结果将是类型float,而如果使用np.dot,则结果将是2D numpy数组。
您可以使用np.squeeze()删除冗余维度(在单浮点数的情况下,这将减少为零维数组)。
还可以使用float()将数组强制转换为类型float。
# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y):
    """
    Computes the cross-entropy cost given in equation (13)
    
    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost given equation (13)
    
    """
    
    m = Y.shape[1] # number of examples

    # Compute the cross-entropy cost
    # (≈ 2 lines of code)
    # logprobs = ...
    # cost = ...
    # YOUR CODE STARTS HERE
    logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2),1-Y)
    cost = -np.sum(logprobs)/m    
    # YOUR CODE ENDS HERE
    
    cost = float(np.squeeze(cost))  # makes sure cost is the dimension we expect. 
                                    # E.g., turns [[17]] into 17 
    
    return cost
A2, t_Y = compute_cost_test_case()
cost = compute_cost(A2, t_Y)
print("cost = " + str(compute_cost(A2, t_Y)))

compute_cost_test(compute_cost)

运行结果:

A2, t_Y = compute_cost_test_case()
cost = compute_cost(A2, t_Y)
print("cost = " + str(compute_cost(A2, t_Y)))

compute_cost_test(compute_cost)
4.5-实施反向传播

使用前向传播期间计算的缓存,现在可以实现后向传播。

练习6-反向传播

实现函数backward_propagation()。
说明:反向传播通常是深度学习中最难(最数学)的部分。为了帮助你,这里是反向传播讲座的幻灯片。您需要使用本幻灯片右侧的六个公式,因为您正在构建一个矢量化的实现。
图1:反向传播。用右边的六个方程式。
图1:反向传播。用右边的六个方程式。
提示:
要计算dZ1,需要计算𝑔[1]′(𝑍[1]) . 自𝑔[1] (.)是tanh激活函数,如果𝑎=𝑔[1] (𝑧) 那么𝑔[1]′(𝑧)=1−𝑎2 . 所以你可以计算𝑔[1]′(𝑍[1] )使用(1-np.power(A1,2))。

# GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):
    """
    Implement the backward propagation using the instructions above.
    
    Arguments:
    parameters -- python dictionary containing our parameters 
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
    X -- input data of shape (2, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    
    Returns:
    grads -- python dictionary containing your gradients with respect to different parameters
    """
    m = X.shape[1]
    
    # First, retrieve W1 and W2 from the dictionary "parameters".
    #(≈ 2 lines of code)
    # W1 = ...
    # W2 = ...
    # YOUR CODE STARTS HERE
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    # YOUR CODE ENDS HERE
        
    # Retrieve also A1 and A2 from dictionary "cache".
    #(≈ 2 lines of code)
    # A1 = ...
    # A2 = ...
    # YOUR CODE STARTS HERE
    A1 = cache["A1"]
    A2 = cache["A2"]
    # YOUR CODE ENDS HERE
    
    # Backward propagation: calculate dW1, db1, dW2, db2. 
    #(≈ 6 lines of code, corresponding to 6 equations on slide above)
    # dZ2 = ...
    # dW2 = ...
    # db2 = ...
    # dZ1 = ...
    # dW1 = ...
    # db1 = ...
    # YOUR CODE STARTS HERE
    dZ2 = A2-Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    # YOUR CODE ENDS HERE
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads
parameters, cache, t_X, t_Y = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, t_X, t_Y)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))

backward_propagation_test(backward_propagation)

运行结果:

dW1 = [[ 0.00301023 -0.00747267]
 [ 0.00257968 -0.00641288]
 [-0.00156892  0.003893  ]
 [-0.00652037  0.01618243]]
db1 = [[ 0.00176201]
 [ 0.00150995]
 [-0.00091736]
 [-0.00381422]]
dW2 = [[ 0.00078841  0.01765429 -0.00084166 -0.01022527]]
db2 = [[-0.16655712]]
 All tests passed.

4.6-更新参数

标题练习7-更新参数

实现更新规则。使用梯度下降。必须使用(dW1、db1、dW2、db2)才能更新(W1、b1、W2、b2)。
一般梯度下降规则:𝜃=𝜃−𝛼(∂𝐽/∂𝜃) ,𝛼 是学习率和𝜃 表示参数。
在这里插入图片描述
在这里插入图片描述
图2:学习率好(收敛)和学习率差(发散)的梯度下降算法。图片由Adam Harley提供。

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):
    """
    Updates parameters using the gradient descent update rule given above
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients 
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
    """
    # Retrieve each parameter from the dictionary "parameters"
    #(≈ 4 lines of code)
    # W1 = ...
    # b1 = ...
    # W2 = ...
    # b2 = ...
    # YOUR CODE STARTS HERE
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # YOUR CODE ENDS HERE
    
    # Retrieve each gradient from the dictionary "grads"
    #(≈ 4 lines of code)
    # dW1 = ...
    # db1 = ...
    # dW2 = ...
    # db2 = ...
    # YOUR CODE STARTS HERE
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    
    # YOUR CODE ENDS HERE
    
    # Update rule for each parameter
    #(≈ 4 lines of code)
    # W1 = ...
    # b1 = ...
    # W2 = ...
    # b2 = ...
    # YOUR CODE STARTS HERE
    W1 = W1 - learning_rate*dW1
    b1 = b1 - learning_rate*db1
    W2 = W2 - learning_rate*dW2
    b2 = b2 - learning_rate*db2
    # YOUR CODE ENDS HERE
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

update_parameters_test(update_parameters)

运行结果:

W1 = [[-0.00643025  0.01936718]
 [-0.02410458  0.03978052]
 [-0.01653973 -0.02096177]
 [ 0.01046864 -0.05990141]]
b1 = [[-1.02420756e-06]
 [ 1.27373948e-05]
 [ 8.32996807e-07]
 [-3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
b2 = [[0.00010457]]
 All tests passed.

4.7-集成

在nn_model()中集成功能

练习8-nn_model

在nn_model()中建立神经网络模型。
说明:神经网络模型必须以正确的顺序使用前面的函数。
#分级函数:nn_moel

# GRADED FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
    """
    Arguments:
    X -- dataset of shape (2, number of examples)
    Y -- labels of shape (1, number of examples)
    n_h -- size of the hidden layer
    num_iterations -- Number of iterations in gradient descent loop
    print_cost -- if True, print the cost every 1000 iterations
    
    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """
    
    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    # Initialize parameters
    #(≈ 1 line of code)
    # parameters = ...
    # YOUR CODE STARTS HERE
    parameters = initialize_parameters(n_x,n_h,n_y)
    
    # YOUR CODE ENDS HERE
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):
         
        #(≈ 4 lines of code)
        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        # A2, cache = ...
        
        # Cost function. Inputs: "A2, Y". Outputs: "cost".
        # cost = ...
        
        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        # grads = ...
        
        # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
        # parameters = ...
        
        # YOUR CODE STARTS HERE
        A2 , cache = forward_propagation(X,parameters)
        cost = compute_cost(A2,Y)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters (parameters,grads)
        # YOUR CODE ENDS HERE
        
        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))

    return parameters
t_X, t_Y = nn_model_test_case()
parameters = nn_model(t_X, t_Y, 4, num_iterations=10000, print_cost=True)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

nn_model_test(nn_model)

运行结果:

Cost after iteration 0: 0.692739
Cost after iteration 1000: 0.000218
Cost after iteration 2000: 0.000107
Cost after iteration 3000: 0.000071
Cost after iteration 4000: 0.000053
Cost after iteration 5000: 0.000042
Cost after iteration 6000: 0.000035
Cost after iteration 7000: 0.000030
Cost after iteration 8000: 0.000026
Cost after iteration 9000: 0.000023
W1 = [[-0.65848169  1.21866811]
 [-0.76204273  1.39377573]
 [ 0.5792005  -1.10397703]
 [ 0.76773391 -1.41477129]]
b1 = [[ 0.287592  ]
 [ 0.3511264 ]
 [-0.2431246 ]
 [-0.35772805]]
W2 = [[-2.45566237 -3.27042274  2.00784958  3.36773273]]
b2 = [[0.20459656]]
 All tests passed.

5-测试模型

5.1-预测

练习9-预测

通过构建Predict()使用模型进行预测。使用正向传播来预测结果。
在这里插入图片描述
例如,如果要根据阈值将矩阵X的条目设置为0和1,可以执行以下操作:X_new=(X>threshold)

# GRADED FUNCTION: predict

def predict(parameters, X):
    """
    Using the learned parameters, predicts a class for each example in X
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (n_x, m)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
    
    # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
    #(≈ 2 lines of code)
    # A2, cache = ...
    # predictions = ...
    # YOUR CODE STARTS HERE
    A2 , cache = forward_propagation(X,parameters)
    predictions = np.round(A2)
    
    # YOUR CODE ENDS HERE
    
    return predictions

测试一下:

parameters, t_X = predict_test_case()

predictions = predict(parameters, t_X)
print("Predictions: " + str(predictions))

predict_test(predict)

运行结果:

Predictions: [[1. 0. 1.]]
 All tests passed

5.2-在平面数据集上测试模型

是时候运行这个模型了,看看它在平面数据集上的表现。运行以下代码,用一个隐藏的𝑛ℎ 隐藏单位!

# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

运行结果:

Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219430
Cost after iteration 9000: 0.218551
Text(0.5, 1.0, 'Decision Boundary for hidden layer size 4')

在这里插入图片描述
测试准确率:

# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

准确率: 90%
与逻辑回归相比,准确率确实很高。模特已经学会了花瓣的图案!与logistic回归不同,神经网络甚至能够学习高度非线性的决策边界。

恭喜你完成这项编程任务!
以下是您刚刚完成的所有工作的简要回顾:

·建立了一个完整的隐层二类分类神经网络
·充分利用了非线性单元
·计算了交叉熵损失
·实现正向和反向传播
·看到了改变隐藏层大小的影响,包括过度拟合。

你已经创建了一个可以学习模式的神经网络!干得好。下面是一些可选练习,可以尝试其他隐藏层大小和其他数据集。

6-调整隐藏层大小(可选/未分级练习)

运行以下代码(可能需要1-2分钟)。然后,观察不同隐层尺寸下模型的不同行为。

# This may take about 2 minutes to run

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i+1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations = 5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y,predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size)*100)
    print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))

运行结果:

隐藏层的节点数量: 1  ,准确率: 67.5 %
隐藏层的节点数量: 2  ,准确率: 67.25 %
隐藏层的节点数量: 3  ,准确率: 90.75 %
隐藏层的节点数量: 4  ,准确率: 90.5 %
隐藏层的节点数量: 5  ,准确率: 91.25 %
隐藏层的节点数量: 20  ,准确率: 90.0 %
隐藏层的节点数量: 50  ,准确率: 90.75 %

解释:

·较大的模型(具有更多隐藏单元)能够更好地拟合训练集,直到最终最大的模型过度拟合数据。
·最佳隐藏层大小似乎是在n_h=5左右。事实上,这里的一个值似乎很好地拟合了数据,而不会引起明显的过度拟合。
·稍后,您将熟悉正则化,它允许您使用非常大的模型(例如nƏh=50),而不需要过拟合。

注意:请记住通过单击右上角的蓝色“提交作业”按钮提交作业。
一些可选/未分级的问题,您可以根据需要进行探索:

·当您将tanh激活改为sigmoid激活或ReLU激活时会发生什么?
·更改学习速率(learning_rate)。会发生什么?
·如果我们改变数据集呢(见下文第5部分!)

7-其他数据集的性能

如果需要,可以为以下每个数据集重新运行整个笔记本(减去数据集部分)。

# Datasets
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()

datasets = {"noisy_circles": noisy_circles,
            "noisy_moons": noisy_moons,
            "blobs": blobs,
            "gaussian_quantiles": gaussian_quantiles}

### START CODE HERE ### (choose your dataset)
dataset = "noisy_moons"
### END CODE HERE ###

X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])

# make blobs binary
if dataset == "blobs":
    Y = Y%2

# Visualize the data
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kivi闭关编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值