基于MDK的分散加载文件

    面对这样一个新东西,先去官网看看,或者看看IDE的帮助,基本上你想要的东西都有了,BAIDU来的都不全面,这是一种学习方法。

    http://www.keil.com/support/man/docs/armlink/armlink_BABDDHBF.htm

    这个链接是我在官网上找到的关于分散加载文件的资料。讲的比较详细了。这里通过一个例子记录下我学习的过程,通过分散加载文件把代码从flash里拷贝到ram里运行, 基于LPC1788。

    先贴下我的sct文件:

LR_IROM1 0x00000000 0x00002000  
{ 
	ER_IROM1 0x00000000 0x00020000  
	{
		*.o (RESET, +First)
		*(InRoot$$Sections)
		startup_lpc177x_8x.o (+RO)
		system_LPC177x_8x.o (+RO)
	}
	
	RW_IRAM1 0x20000000 0x00004000  
	{
		.ANY (+RW +ZI)
	}
}

LR_IROM2 0x00002000	0x0007E000
{
	VECTOR 0x10000000 EMPTY 0xE4
	{
	}
	
	ER_IRAM1 +0
	{
		.ANY (+RO)
	}
}


这里有两个加载域(load region)LR_IROM1和LR_IROM2,LR_IROM1是初始化程序,拷贝代码等,从ROM的地址0开始,LR_ROM2是应用程序,从ROM的0x2000开始。+RO表示只读,代码或者只读数据,一般用来表示代码,+RW表示可读可写的数据,+ZI表示初始化为0的数据。大括号里面的为运行域(execution region),一个加载域可以包含几个运行域,LR_ROM2里面有两个运行域,VECTOR和ER_IRAM1,我用VECTOR来表示中断向量区域,ER_IRAM1来表示应用程序区,+0表示紧接着VECTOR排放,EMPTY表示空的,这里空出0xE4的大小,用来放中断向量,.ANY表示除了上面用到的代码之外的代码,官网上有专门解释.ANY的一节。

    下面用一张图来表示这个程序的加载域和执行域:

 

其实加载域的empty这块区域是不用空出来的,主要是运行域要空出来,用来拷贝中断向量,看个人喜好了,我觉得空出来方便引用这块区域的执行域地址。


    这样框架就比较清楚了,拷贝的程序清单如下:

extern unsigned char Image$$VECTOR$$Base;
extern unsigned char Image$$VECTOR$$Length;

extern unsigned char Load$$ER_IRAM1$$Base;
extern unsigned char Image$$ER_IRAM1$$Base;
extern unsigned char Image$$ER_IRAM1$$Length;

void CopyCode2Ram ()
{
    unsigned char *pSrc, *pDes;
    unsigned int count;
    
    SCB->VTOR = 0x10000000;
    
    pSrc = 0;
    pDes = (unsigned char*)&Image$$VECTOR$$Base;
    count = 0xE4;
    
    while (count--)
    {
        *pDes++ = *pSrc++;
    }
    
    
    count = (unsigned int)&Image$$ER_IRAM1$$Length;
    pDes = (unsigned char*)&Image$$ER_IRAM1$$Base;
    pSrc = (unsigned char*)(&Load$$ER_IRAM1$$Base + 0xE4);
    
    while (count--)
    {
        *pDes++ = *pSrc++;
    }
}

其中拷贝中断向量的时候要指定中断向量的偏移地址。Load$$ER_IRAM1$$Base表示执行域ER_IRAM1的加载地址;Image$$ER_IRAM1$$Base表示执行域ER_IRAM1的执行地址;Image$$ER_IRAM1$$Length表示执行域ER_IRAM1的实际长度,VECTOR区域因为是EMPTY,所以实际长度是0,而中断向量的长度是固定的,所以程序里就写了个常数。

  • 10
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 20
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值