鲁棒性
目录
1详细介绍编辑
溯源和背景
鲁棒性/抗变换性(英文:robustness)原是
统计学中的一个专门术语,20世
纪70年代初开始在
控制理论的研究中流行起来,用以表征控制系统对特性或参数
扰动的
不敏感性。鉴于中文“鲁棒性”的词义不易被理解,在近期一些文献中,“robustness”开始被翻译成了语义更加易懂的“抗变换性”,“抗变换性”和“鲁棒性”在译文中经常互相通用
[1-2]
。
在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(
标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为
控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必须考虑的一个基本问题。对鲁棒性的研究主要限于线性定常控制系统,所涉及的领域包括稳定性、无
静差性、适应控制等。
原理
鲁棒性问题与控制系统的
相对稳定性(频率域内表征控制系统稳定性裕量的一种性能指标)和
不变性原理(自动控制理论中研究扼制和消除扰动对控制系统影响的理论)有着密切的联系,
内模原理(把外部作用信号的动力学模型植入控制器来构成高精度
反馈控制系统的一种设计原理)的建立则对鲁棒性问题的研究起了重要的推动作用。当系统中存在模型摄动或
随机干扰等不确定性因素时能保持其满意功能品质的控制理论和方法称为
鲁棒控制。早期的
鲁棒控制主要研究单回路系统频率特性的某些特征,或基于小摄动分析上的灵敏度问题。现代鲁棒控制则着重研究控制系统中非微有界摄动下的分析与设计的理论和方法。
控制系统的一个鲁棒性是指控制系统在某种类型的
扰动作用下,包括自身模型的扰动下,系统某个性能指标保持不变的能力,即抗干扰能力较强。对于实际工程系统,人们最关心的问题是一个控制系统当其模型参数发生大幅度变化或其结构发生变化时能否仍保持渐近稳定,这叫稳定鲁棒性。进而还要求在模型扰动下系统的
品质指标仍然保持在某个许可范围内,这称为品质鲁棒性。鲁棒性理论目前正致力于研究
多变量系统具有稳定鲁棒性和品质鲁棒性的各种条件。它的进一步发展和应用,将是控制系统最终能否成功应用于实践的关键。
在数字
水印技术中,鲁棒性是指在经过常规信号处理操作后能够检测出水印的能力;针对图像的常规操作包括空间滤波、有损压缩、打印与复印、几何变形等;
2内容编辑
控制系统在其特性或参数发生摄动时仍可使品质指标保持不变的性能。鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是
统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。在实际问题中,系统特性或参数的摄动常常是不可避免的。产生摄动的原因主要有两个方面,一个是由于量测的不精确使特性或参数的实际值会偏离它的设计值(标称值),另一个是系统运行过程中受环境因素的影响而引起特性或参数的缓慢漂移。因此,鲁棒性已成为控制理论中的一个重要的研究课题,也是一切类型的控制系统的设计中所必需考虑的一个基本问题。对鲁棒性的研究主要限于
线性定常控制系统,所涉及的领域包括
稳定性、无静差性、适应控制等。鲁棒性问题与控制系统的相对稳定性和不变性原理有着密切的联系,
内模原理的建立则对鲁棒性问题的研究起了重要的推动作用。
3渐近稳定编辑
以渐近稳定为性能指标的一类鲁棒性。如果控制系统在其特性或参数的
标称值处是渐近稳定的,并且对标称值的一个邻域内的每一种情况它也是渐近稳定的,则称此系统是结构渐近稳定的。结构渐近稳定的控制系统除了要满足一般
控制系统设计的要求外,还必须满足另外一些附加的条件。这些条件称为结构渐近
稳定性条件,可用代数的或几何的语言来表述,但都具有比较复杂的形式。结构渐近稳定性的一个常用的度量是稳定裕量,包括
增益裕量和
相角裕量,它们分别代表控制系统为渐近稳定的前提下其
频率响应在增益和相角上所留有的储备。一个控制系统的稳定裕量越大,其特性或参数的允许
摄动范围一般也越大,因此它的鲁棒性也越好。业已证明,
线性
二次型(LQ)
最优控制系统具有十分良好的鲁棒性,其
相角裕量至少为60°,并确保1/2到∞的
增益裕量。已经成为
软件性能指标之一。
4无静差性编辑
以准确地跟踪外部参考输入信号和完全消除扰动的影响为稳态性能指标的一类鲁棒性。如果控制系统在其特性或参数的标称值处是渐近稳定的且可实现无
静差控制(又称输出调节,即系统输出对参考输入的稳态跟踪误差等于零),并且对标称值的一个邻域内的每一种情况它也是渐近稳定和可实现无静差控制的,那么称此控制系统是结构无静差的。使系统实现结构无
静差的控制器通常称为鲁棒调节器。用方程
N1(
D)
f(
t)=0
N2(
D)
z0(
t)=0
表示加于受控系统的扰动
f(
t)和参考输入
z0(
t)的动态模型,式中为
微分算子,
N1(
D)和
N2(
D)为
D的
多项式。用
k1(
s)和
k2(
s)(
s为复数变量)分别表示
N1(
D)和
N2(
D)的最小多项式,而用
k(
s)表示
k1(
s)和
k2(
s)的
最小公倍式。那么存在鲁棒调节器可使受控系统
T(
s)
z=
U(
s)
u+
M(
s)
f
y=
z
(见
多变量频域方法)实现结构无
静差的
充分必要条件是,控制向量
u的维数大于输出向量
y的维数,同时对
代数方程
k(
s)=0的所有根
si(
i=1,2,…,
p)
矩阵
U(
si)为满秩。对于可实现结构无
静差的受控系统,一个动态补偿器
P(
s)
ξ=
z0-
z
u=
R(
s)
ξ
(
ξ为补偿器的
状态向量)能构成为它的鲁棒调节器的
充分必要条件是,
矩阵
P(
s)的每一个元都可被
k(
s)除尽,同时由受控系统和动态补偿器组成的
闭环控制系统是结构渐近稳定的。在采用其他形式的数学描述时,鲁棒调节器和结构无
静差控制系统的这些条件的表述形式也不同。鲁棒调节器在结构上有两部分组成,一部分称为镇定补偿器,另一部分称为伺服补偿器。镇定补偿器的功能是使控制系统实现结构渐近稳定。伺服补偿器中包含有参考输入和
扰动信号的一个共同的
动力学模型,因此可实现对参考输入和扰动的无
静差控制。对于呈阶跃变化的参考输入和扰动信号,它们共同的动力学模型是一个积分器;对于呈斜坡直线变化的参考输入信号和呈阶跃变化的扰动信号,其共同的动力学模型是两个积分器的串接。