留数定理

定理

假设U复平面上的一个单连通开子集a_1, \cdots, a_n是复平面上有限个点,f是定义在U\setminus{a_1, \cdots, a_n}全纯函数。如果\gamma是一条把a_1, \cdots, a_n包围起来的可求长曲线,但不经过任何一个a_k,并且其起点与终点重合,那么:

\oint_\gamma f(z)\, dz =2\pi i \sum_{k=1}^n \operatorname{I}(\gamma, a_k) \operatorname{Res}( f, a_k ).

如果γ是若尔当曲线,那么I(γ, ak) = 1,因此:

\oint_\gamma f(z)\, dz =2\pi i \sum_{k=1}^n \operatorname{Res}( f, a_k ).

在这里,Res(fak)表示f在点ak留数,I(γ, ak)表示γ关于点ak卷绕数。卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。

例子

以下的积分

\int_{-\infty}^\infty {e^{itx} \over x^2+1}\,dx
积分路径

在计算柯西分布特征函数时会出现,用初等的微积分是不可能把它计算出来的。我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从−aa,然后再依逆时针方向沿着以0为中心的半圆从a到−a。取a为大于1,使得虚数单位i包围在曲线里面。路径积分为:

\int_C {f(z)}\,dz =\int_C {e^{itz} \over z^2+1}\,dz.

由于eitz是一个整函数(没有任何奇点),这个函数仅当分母z2 + 1为零时才具有奇点。由于z2 + 1 = (z + i)(z − i),因此这个函数在z = iz = −i时具有奇点。这两个点只有一个在路径所包围的区域中。

由于f(z)是

\frac{e^{itz}}{z^2+1} \,\!{}=\frac{e^{itz}}{2i}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)\,\!
 {}=\frac{e^{itz}}{2i}\frac{1}{z-i} -\frac{e^{itz}}{2i(z+i)} , \,\!

f(z)在z = i留数是:

\operatorname{Res}_{z=i}f(z)={e^{-t}\over 2i}.

根据留数定理,我们有:

\int_C f(z)\,dz=2\pi i\cdot\operatorname{Res}_{z=i}f(z)=2\pi i{e^{-t} \over 2i}=\pi e^{-t}.

路径C可以分为一个“直”的部分和一个曲线弧,使得:

\int_{\mbox{straight}}+\int_{\mbox{arc}}=\pi e^{-t}\,

因此

\int_{-a}^a =\pi e^{-t}-\int_{\mbox{arc}}.

如果t > 0,那么当半圆的半径趋于无穷大时,沿半圆路径的积分趋于零:

\int_{\mbox{arc}}{e^{itz} \over z^2+1}\,dz \leq  \int_{\mbox{arc}}\left|{e^{itz} \over z^2+1}\right|\,|dz|=\int_{\mbox{arc}}{|e^{itz}| \over |z^2+1|}\,|dz|=\int_{\mbox{arc}}{1 \over |z^2+1|}\,|dz|\leq \int_{\mbox{arc}}{1 \over a^2-1}\,|dz|=\frac{\pi a}{a^2-1}\rightarrow 0\ \mbox{as}\ a\rightarrow\infty.


因此,如果t > 0,那么:

\int_{-\infty}^\infty{e^{itz} \over z^2+1}\,dz=\pi e^{-t}.

类似地,如果曲线是绕过−i而不是i,那么可以证明如果t < 0,则

\int_{-\infty}^\infty{e^{itz} \over z^2+1}\,dz=\pi e^t,

因此我们有:

\int_{-\infty}^\infty{e^{itz} \over z^2+1}\,dz=\pi e^{-\left|t\right|}.

(如果t = 0,这个积分就可以很快用初等方法算出来,它的值为π。)





  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值