AI应用实战
文章平均质量分 91
AI 核心算法理论与实战, AI 最佳实践
TracyCoder123
人生是旷野,不是赛道。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangChain基础篇(四):构建智能Agent——让LLM学会使用工具与记忆
是解决这些问题的终极方案。它不仅是“大脑”(LLM),还拥有“双手”(Tools)和“笔记本”(Memory)。:LLM 读取记忆,知道“我住的地方”=“San Francisco”。:Tavily 接口被调用,返回了 JSON 格式的旧金山实时天气数据(温度 14.4°C,部分多云)。Agent 的执行过程非常精彩,它展示了 LLM 如何“思考”并决定“行动”。:LLM 接收到工具返回的 JSON 数据,将其转化为自然语言,友好地回答了用户。注意:用户没有说“旧金山”,只说了“我住的地方”。原创 2026-01-23 09:38:58 · 649 阅读 · 0 评论 -
LangChain 基础篇(三):向量存储 | RAG 的核心基石
首先,我们需要准备“饲料”——即喂给向量数据库的数据。import os# 设置超时,防止网络波动# --- 步骤 1: 定义文档 ---# Document 对象包含两个核心属性:# 1. page_content: 实际的内容# 2. metadata: 辅助信息,用于后续过滤(如来源、时间)Document(),Document(),Document(),Document(),Document(),原创 2026-01-23 09:38:07 · 868 阅读 · 0 评论 -
LangChain基础篇(二):记忆、修剪与流式输出
这是本文的亮点。我们要定义一个策略:当消息太长时,如何保留最重要的信息?# 自定义简单的 Token 计数器 (生产环境建议使用 tiktoken)# 2. 获取消息修剪器max_tokens=65, # 设定极小的阈值仅作演示,实际使用通常为数千strategy="last", # 保留最新的消息include_system=True, # 系统提示词也参与计算allow_partial=False, # 不允许切断单条消息的内容。原创 2026-01-22 10:44:39 · 691 阅读 · 0 评论 -
LangChain基础篇(一) :简介、环境安装、入门
作为《LangChain 基础篇》的第一章,本文将带你全景俯瞰 LangChain 的生态架构,完成开发环境搭建,并亲手编写你的第一个基于。理解这些组件的关系,是成为高级开发者的第一步。在大语言模型(LLM)应用爆发的今天,如何从简单的“对话框”走向复杂的“AI应用”?它像一座桥梁,连接了底层的模型能力与上层的应用逻辑。(利用其 OpenAI 兼容接口),完成一个“核心概念解释”的任务。通过本篇教程,我们不仅搭建了环境,还通过一段精简的代码,体验了。我们将跳过繁琐的理论,直接通过代码上手。原创 2026-01-20 11:40:30 · 1036 阅读 · 0 评论 -
LLM应用开发框架技术选型指南:LangChain vs LlamaIndex
它强调的是 Input -> Processing -> Output 的过程控制。LangChain 需要显式地定义每一个步骤(加载器、分割器、嵌入模型、向量库),代码量稍多,但提供了极致的颗粒度控制。在构建基于大语言模型(LLM)的应用时,选择合适的编排框架是至关重要的一步。LlamaIndex 在处理数据索引方面极其简洁,几行代码即可完成“加载-索引-查询”的闭环。在深入代码之前,我们需要理解这两个框架的“灵魂”。,各自拥有庞大的生态和独特的设计哲学。AI 助理 / Chatbot。原创 2026-01-20 11:39:30 · 960 阅读 · 0 评论 -
星火大模型接入及文本生成HTTP流式、非流式接口(JAVA)
接口文档在这个地址查看:https://www.xfyun.cn/doc/spark/HTTP%E8%B0%83%E7%94%A8%E6%96%87%E6%A1%A3.html#_1-%E6%8E%A5%E5%8F%A3%E8%AF%B4%E6%98%8E。本文以模型Spark Lite为例,重要信息(APIPassword、接口地址)在这个页面查看:https://console.xfyun.cn/services/cbm。相比非流式略微有一些不同,响应分成了多次,最后一个。原创 2025-01-24 10:30:13 · 2489 阅读 · 1 评论 -
揭开ChatGPT面纱(5):使用chat.completions接口实现多轮聊天
openai版本==1.6.1,本博客对应文件夹05。原创 2024-04-22 13:30:00 · 6429 阅读 · 0 评论 -
揭开ChatGPT面纱(4):单轮及多轮文本生成任务实践(completions接口)
openai版本==1.6.1,本博客对应文件夹04在前面的博客中介绍过了OpenAI一共有11个接口,其中completions接口常用于文本生成类任务。下面来对completions接口的参数、使用进行一些介绍。原创 2024-04-22 09:45:00 · 1586 阅读 · 0 评论 -
揭开ChatGPT面纱(3):使用OpenAI进行文本情感分析(embeddings接口)
openai版本==1.6.1,本博客对应文件夹03在这一篇博客中我将使用OpenAI的embeddings接口判断21条服装评价是否是好评。原创 2024-04-21 16:09:54 · 1740 阅读 · 0 评论 -
揭开ChatGPT面纱(2):OpenAI主类源码概览
OpenAI版本==1.6.1在上一篇博客中,我实现并运行了一个OpenAI的demo,我们可以发现,想要使用OpenAI完成一个需求仅需要两个步骤,第一步是 传入参数 配置并声明对象,第二步是 调用接口 实现需求。清楚这两点后,我们接着来看看源码。在openai包中,OpenAI类是核心类,它作为客户端库的入口点,提供了与OpenAI API进行交互的方法和属性。这个类封装了API的各种功能,使得开发者可以通过编写代码来使用OpenAI提供的各种服务,如文本生成、图像生成、模型微调等。下面我将针对Open原创 2024-04-21 10:45:00 · 1878 阅读 · 0 评论 -
揭开ChatGPT面纱(1):准备工作(搭建开发环境运行OpenAI Demo)
本博客对应01文件夹。原创 2024-04-20 18:03:39 · 1459 阅读 · 0 评论 -
PandasAI的应用与实战解析(二):PandasAI使用流程与功能介绍
PandasAI这个工具最突出的优点就是通过结合了Pandas和生成式LLMs,极大地为开发人员降低了工作量。可以看到,对于开发人员来说实现一个需求需要完成多个步骤。PandasAI 使用生成式 AI 模型来理解和解释自然语言查询,并将其转换为 python 代码和 SQL 查询。然后,它使用代码与数据进行交互,并将结果返回给用户。可以看到,原创 2024-04-13 13:30:21 · 4714 阅读 · 3 评论 -
PandasAI的应用与实战解析(一):环境安装、运行demo
一句话总结的话,PandasAI就是一个结合了Pandas和AI的开源工具,更详细地说,PandasAI 是一款强大的Python库,它使得用户能够以自然语言轻松向各类数据源(如CSV、XLSX、PostgreSQL、MySQL、BigQuery、Databricks及Snowflake等)提出问题。同时,它能有效处理缺失值问题以净化数据集,并通过特征生成进一步提升数据质量。),已经有其他人遇到了和我一样的问题,并给该开源作者提了issue,但是目前这个bug还没有修复,因此需要修改一下demo的代码。原创 2024-04-12 19:00:32 · 3614 阅读 · 3 评论
分享