PandasAI的应用与实战解析(二):PandasAI使用流程与功能介绍

文章介绍了PandasAI如何通过结合Pandas和生成式LLMs,简化开发人员的数据分析和后端开发过程,包括使用流程、配置文件解析、支持的数据库类型、LLM选项以及其提供的缓存和定制功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PandasAI这个工具最突出的优点就是通过结合了Pandas和生成式LLMs,极大地为开发人员降低了工作量。

  • 传统的开发调用流程(数据分析相关):
    可以看到,对于开发人员来说实现一个需求需要完成多个步骤。
    在这里插入图片描述

  • 使用PandasAI之后的开发调用流程:
    PandasAI 使用生成式 AI 模型来理解和解释自然语言查询,并将其转换为 python 代码和 SQL 查询。然后,它使用代码与数据进行交互,并将结果返回给用户。可以看到,PandasAI从很大程度上降低了后端开发的工作量。
    在这里插入图片描述

1.使用PandasAI进行开发的流程

在这里插入图片描述

  • 要使用PandasAI进行开发,首先,需要导入数据,可以是非数据库的pandas.DataFrame()或者数据库的connector如MySQLConnector。
  • 然后,声明主类对象,根据数据的不同可以选择单帧数据一次提问的SmartDataFrame、多帧数据一次提问的SmartDatalake或多帧数据多次提问的Agent。
  • 接下来,调用方法进行回答,包括基础问、响应式提问、针对回答进行解释、对用户的查询语句进行优化重组。
  • 最后,返回结果,不仅支持结构化数据返回,还支持图表(如下图所示):

在这里插入图片描述

代码示例如下:

"""Example of using PandasAI with a pandas dataframe"""

from pandasai import SmartDataframe
### H20 算力优化及性能指标分析 #### INT8 和 FP16 的性能提升 英伟达H20在INT8和FP16精度下的表现尤为突出,其设计旨在最大化推理效率并降低延迟。相比前代产品,H20通过架构改进实现了更高的吞吐量,在INT8模式下提供了显著增强的TOPS(Tera Operations Per Second),而在FP16模式下则提升了TFLOPS(Tera Floating-point Operations Per Second)。这种优化使得H20成为机器学习模型部署的理想选择[^2]。 #### FLOPS 性能对比 就FLOPS而言,H20相较于前一代GPU有明显进步。具体来说,它不仅提高了单精度浮点运算能力(FP32),还大幅增强了混合精度计算的支持力度,这对于需要高精度高效能平衡的应用场景尤为重要。此外,借助Tensor Core的新特性,H20能够在特定工作负载中实现更高倍率的速度增益。 #### 功耗管理 TDP 设计 功耗方面,尽管H20拥有更强悍的处理能力和更大的晶体管数量,但由于采用了先进的制程技术和高效的电源管理系统,整体能耗得到了有效控制。对于GB300、B300以及HGX平台上的配置版本,各自的热设计功率(TDP)均经过精心调整以适应不同的应用场景需求。例如,在数据中心环境中运行时,即使面对极高负荷的任务也能保持稳定而持久的表现。 #### 前代产品的比较 当我们将目光投向前几代NVIDIA GPU时可以发现,无论是从原始算力还是实际应用效能来看,H20都树立了一个新的标杆。特别是在针对AI训练和推理任务进行了专门调优之后,无论是在每瓦特性能还是单位面积内的计算密度上都有所突破。这表明相对于早期型号如V100或A100等,新一代硬件已经迈入了一个全新阶段——即更加注重可持续发展的同时追求极致性能。 ```python # 示例代码展示如何查询 NVIDIA GPU 的基本规格信息 (伪代码) import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetPowerUsage(handle) print(f"Current Power Usage: {info / 1000} W") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TracyCoder123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值