人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
程序员杂谈
自我评价
诚实信用 勤奋刻苦 有较强的组织能力和团队意识
责任心强 有创新精神 自学能力较好
精通seo优化
展开
-
赛迪智库陆峰:大数据和人工智能开启产业发展新时代
转自公众号: 数字经济智库 “企业对数据的驾驭能力决定其核心竞争力,数据流通越快,数据驾驭能力越强,数据使用成本越低,企业竞争能力越强,这是数字经济发展水平很重要的标志,各行各业都离不开互联网、大数据和人工智能,互联网促进数据的汇集,为智能化的发展提供平台。大数据是人工智能的基础,人工智能是大数据发展的高级阶段,要发展人工智能离不开大数据,但人工智能肯定比大数据更加高, 大数据和人工智能...转载 2019-01-22 14:17:48 · 1517 阅读 · 0 评论 -
支持向量学习机总结
支持向量学习机总结: 监督式学习重点介绍了支持向量学习机、核函数、决策树、随机森林及GBTs 支持向量学习机的出发点是解决线性可分或近似线性可分的问题。这个模型很重要的隐含假设:每个数据点的权重并不相同。支持向量机在训练时并不考虑所有数据,而只关心其中被直线分开的“异常点”。 为了支持向量学习机能处理非线性问题,引入了核函数的概念。核函数能高效的完成空间变换,特别是从低...原创 2018-12-14 12:34:23 · 423 阅读 · 0 评论 -
机器学习的思考–计算机的潜意识
最后,作者想谈一谈关于机器学习的一些思考。主要是作者在日常生活总结出来的一些感悟。回想一下我在节1里所说的故事,我把小Y过往跟我相约的经历做了一个罗列。但是这种罗列以往所有经历的方法只有少数人会这么做,大部分的人采用的是更直接的方法,即利用直觉。那么,直觉是什么?其实直觉也是你在潜意识状态下思考经验后得出的规律。就像你通过机器学习算法,得到了一个模型,那么你下次只要直接使用就行了。那么这个规律你是...转载 2018-05-24 10:28:41 · 491 阅读 · 0 评论 -
机器学习算法---总结
除了以上算法之外,机器学习界还有其他的如高斯判别,朴素贝叶斯,决策树等等算法。但是上面列的六个算法是使用最多,影响最广,种类最全的典型。机器学习界的一个特色就是算法众多,发展百花齐放。下面做一个总结,按照训练的数据有无标签,可以将上面算法分为监督学习算法和无监督学习算法,但推荐算法较为特殊,既不属于监督学习,也不属于非监督学习,是单独的一类。监督学习算法:线性回归,逻辑回归,神经网络,SVM无监督...转载 2018-05-21 16:57:15 · 275 阅读 · 0 评论 -
机器学习算法---降维算法
降维算法降维算法也是一种无监督学习算法,其主要特征是将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,例如,房价包含房子的长、宽、面积与房间数量四个特征,也就是维度为4维的数据。可以看出来,长与宽事实上与面积表示的信息重叠了,例如面积=长 × 宽。通过降维算法我们就可以去除冗余信息,将特征减少为面积与房间数量两个特征,即从4维的数据压缩到2维。于是我们将数据从高维降低到低维,...转载 2018-05-21 16:47:44 · 1439 阅读 · 0 评论 -
机器学习算法---推荐算法
推荐算法推荐算法是目前业界非常火的一种算法,在电商界,如亚马逊,天猫,京东等得到了广泛的运用。推荐算法的主要特征就是可以自动向用户推荐他们最感兴趣的东西,从而增加购买率,提升效益。推荐算法有两个主要的类别:一类是基于物品内容的推荐,是将与用户购买的内容近似的物品推荐给用户,这样的前提是每个物品都得有若干个标签,因此才可以找出与用户购买物品类似的物品,这样推荐的好处是关联程度较大,但是由于每个物品都...转载 2018-05-21 16:54:08 · 1407 阅读 · 0 评论 -
机器学习的子类–深度学习
近来,机器学习的发展产生了一个新的方向,即“深度学习”。虽然深度学习这四字听起来颇为高大上,但其理念却非常简单,就是传统的神经网络发展到了多隐藏层的情况。在上文介绍过,自从90年代以后,神经网络已经消寂了一段时间。但是BP算法的发明人Geoffrey Hinton一直没有放弃对神经网络的研究。由于神经网络在隐藏层扩大到两个以上,其训练速度就会非常慢,因此实用性一直低于支持向量机。2006年,Geo...转载 2018-05-22 17:11:14 · 1022 阅读 · 0 评论 -
人工智能-国家战略抓手
原创 2018-11-02 17:11:41 · 711 阅读 · 0 评论 -
监督室式学习和非监督是学习-机器学习
机器学习可分为两大类:监督式学习和非监督式学习监督式学习特点:训练的数据是有标注的;按照标注又可以分为:分类和回归分类:标注的数据是离散的,对应的模型是分类;回归:标注的数据是连续的,对应的模型是回归;非监督式学习特点:训练的数据里没有标注,只有自变量非监督学习可分为:聚类和降为聚类:把距离比较近的点归属于一类的称为聚类;降为:把高维空间的数据映射到低维空间称为降为;...原创 2018-11-14 18:59:42 · 2022 阅读 · 0 评论 -
交叉验证
交叉验证目的:防范过拟合我们把数据集分成训练集、验证集和测试集;训练集用来估算模型参数,验证集用来选择超参数,测试集用来评估模型效果。 交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测...原创 2018-11-21 20:58:37 · 1250 阅读 · 0 评论