6、归纳结构一致哈希:高效图像检索新方法

归纳结构一致哈希:高效图像检索新方法

1. 引言

在大规模相似性搜索场景中,学习紧凑且有意义的数据表示对于实际应用至关重要。哈希技术,即二进制表示学习,因其在处理大量数据时具有低内存和低计算需求的独特优势而备受关注。创建简洁的哈希码是提高搜索速度并保持检索质量的关键。

基于学习的哈希方法在快速图像检索方面表现出色,优于传统的无学习(或与数据无关)的哈希技术。基于学习的哈希核心原理是通过汉明排名或查找表来实现高效的最近邻搜索。根据标签可用性,这些方法大致可分为无监督和有监督(或半监督)两类:
- 无监督哈希 :专注于创建保持未标记数据点的度量距离、分布或拓扑特征的哈希函数,但往往忽略了类别标签中的关键信息。
- 有监督哈希 :旨在学习保留语义信息的哈希码,通过利用类别标签中的判别性语义,通常能显著提高性能。

深度学习革命推动了基于深度学习的哈希研究的兴起。然而,大多数深度哈希方法先学习连续特征,再进行二值化,这种连续松弛方法在优化过程中难以产生真正紧凑的二进制代码,且模型复杂,不适合实时应用。

语义保留哈希的关键在于将对象从视觉特征空间和二进制类空间映射到离散的汉明空间,但有效弥合视觉、语义和哈希空间之间的三边域差距是一个重大挑战。传统检索模型在利用类别信息和三边域语义连接方面存在不足,且离散优化二进制代码的方法效率低下。

为解决这些问题,引入了归纳结构一致哈希(ISCH)框架,其核心是建立一个中间语义空间,以弥合视觉空间、原始类标签空间和汉明空间之间的差距。该框架的主要贡献如下:
1. 促进灵活语义知识在视觉、语义和离散汉明三个不同域之

一、 内容概要 本资源提供了一个完整的“金属板材压弯成型”非线性仿真案例,基于ABAQUS/Explicit或Standard求解器完成。案例精确模拟了模具(凸模、凹模)与金属板材之间的接触、压合过程,直至板材发生塑性弯曲成型。 模型特点:包含完整的模具-工件装配体,定义了刚体约束、通用接触(或面面接触)及摩擦系数。 材料定义:金属板材采用弹塑性材料模型,定义了完整的屈服强度、塑性应变等真实应力-应变数据。 关键结果:提供了成型过程中的板材应力(Mises应力)、塑性应变(PE)、厚度变化​ 云图,以及模具受力(接触力)曲线,完整再现了压弯工艺的力学状态。 二、 适用人群 CAE工程师/工艺工程师:从事钣金冲压、模具设计、金属成型工艺分析与优化的专业人员。 高校师生:学习ABAQUS非线性分析、金属塑性成形理论,或从事相关课题研究的硕士/博士生。 结构设计工程师:需要评估钣金件可制造性(DFM)或预测成型回弹的设计人员。 三、 使用场景及目标 学习目标: 掌握在ABAQUS中设置金属塑性成形仿真的全流程,包括材料定义、复杂接触设置、边界条件与载荷步。 学习如何调试和分析大变形、非线性接触问题的收敛性技巧。 理解如何通过仿真预测成型缺陷(如减薄、破裂、回弹),并与理论或实验进行对比验证。 应用价值:本案例的建模方法与分析思路可直接应用于汽车覆盖件、电器外壳、结构件等钣金产品的冲压工艺开发与模具设计优化,减少试模成本。 四、 其他说明 资源包内包含参数化的INP文件、CAE模型文件、材料数据参考及一份简要的操作要点说明文档。INP文件便于用户直接修改关键参数(如压边力、摩擦系数、行程)进行自主研究。 建议使用ABAQUS 2022或更高版本打开。显式动力学分析(如用Explicit)对计算资源有一定要求。 本案例为教学与工程参考目的提供,用户可基于此框架进行拓展,应用于V型弯曲
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值