C语言数字图像处理---2.1 二值图像形态学算法

        本章介绍由数学形态学衍生的二值图像形态学算法,主要包括形态学膨胀、腐蚀、开运算和闭运算四种常用算法,并以此为基础讲解形态学轮廓提取算法,结合C语言编程实现,通俗易懂,图文并茂。

[定义与算法]

        数学形态学英文为“Mathematical morphology”, 是一门建立在格论和拓扑学基础之上的图像分析学科,数字图像处理中的形态学算法以此为基础发展而来,图像形态学在目标检测与识别等方面应用广泛。

        我们常用的基本的运算包括:腐蚀和膨胀、开运算、闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换等,内容广泛,相关研究论文也多如牛毛,可以属于一个单独的领域,甚至可以单独著书论著。

        在学习形态学膨胀和腐蚀算法之前,我们先来培养个大概的印象,所谓膨胀就是扩大、增加,将图像某些信息扩大或者增多;所谓腐蚀就是缩小、减少,将图像某些信息减少;如何扩大或者缩小呢?总有一个依据或者向导,而这个依据或者向导就是形态学中的“结构元素”。

        对于同一张二值图像而言,结构元素选取的不同,算法结果也就不同,结构元素的选取往往具有旋转不变性或者镜像不变性,如下图Fig.1所示,所有结构元素的原点(黑色点)都位于中心,其他区域关于中心对称。Fig.1中所示的结构元素也是常用

Trent1985 CSDN认证博客专家 深度学习 人像美颜美妆算法 图像特效
本人多年来专注图像特效、人像美颜美妆算法研究、AI美颜美妆探索,著有《图像视频滤镜与人像美颜美妆算法详解》一书,欢迎 志同道合的朋友们一起学习交流!
个人座右铭:谨言慎行,三思而后行!
在无人驾驶中,交通标志识别是一项重要的任务。本项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,得深入学习和探究。 除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:训练自己的数据集》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。 请大家关注以上课程,并选择学习。 下图是使用YOLOv3进行交通标志识别的测试结果
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值