DL概念总结


监督学习

1.无监督学习

无监督学习和其他两种学习方法的主要区别在于无监督学习不需要提前知道标签数据集的类别标签。无监督学习算法使用场景通常为聚类和降维,如使用k-means聚类、系统聚类、密度聚类等算法进行数据聚类,使用主成分分析、流形降维等算法减少数据的特征数量。

2.半监督学习

半监督学习是一种介于有监督学习和无监督学习之间的学习算法,半监督学习的特点就是利用极少量的标签数据和大量的无标签数据进行学习,通过学习得到的经验对无标签的测试数据进行预测

3.有监督学习

有监督学习的主要特性是使用大量有标签的训练数据来建立模型,以预测新的未知标签的数据。用来指导模型建立的标签可以是类别数据、连续数据等。如果标签是可以分类的,如0~9手写数字识别,则称这样的有监督学习为分类,如果标签是连续的数据,如身高、年龄、股票等,则称其为回归。


端到端(end-to-end)

端到端指的是输入是原始数据,输出是最后的结果。而原来的输入端不是直接的原始数据(raw data),而是在原始数据中提取的特征(features)。这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取(hand-crafted functions)图像的一些关键特征,这实际就是就一个降维的过程。

经典机器学习方式是以人类的先验知识将raw数据预处理成feature,然后对feature进行分类。分类结果十分取决于feature的好坏。所以过去的机器学习专家将大部分时间花费在设计feature上。那时的机器学习有个更合适的名字叫feature engineering(特征工程)。

那么特征如何提取?特征提取的好坏异常关键,甚至比学习算法还重要,举个例子,对一系列人的数据分类,分类结果是性别,如果你提取的特征是头发的颜色,无论分类算法如何,分类效果都不会好,如果你提取的特征是头发的长短,这个特征就会好很多,但是还是会有错误,如果你提取了一个超强特征,比如染色体的数据,那你的分类基本就不会错了。

这就意味着,特征需要足够的经验去设计,这在数据量越来越大的情况下也越来越困难。于是就出现了端到端网络,特征可以自己去学习,所以特征提取这一步也就融入到算法当中,不需要人来干预了。

随着深度学习、神经网络的发展,让网络自己学习如何抓取feature效果更佳。由于多层神经网络被证明能够耦合任意非线性函数,通过一些配置能让网络去做以前需要人工参与的特征设计这些工作,然后配置合适的功能如classifier,regression,而现在神经网络可以通过配置layers的参数达到这些功能,整个输入到最终输出无需太多人工设置,从raw data到最终输出特征。于是兴起了representation learning。这种方式对数据的拟合更加灵活。

相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端到端的。

而深度学习模型在训练过程中,从输入端(输入数据)到输出端会得到一个预测结果,与真实结果相比较会得到一个误差,这个误差会在模型中的每一层传递(反向传播),每一层的表示都会根据这个误差来做调整,直到模型收敛或达到预期的效果才结束,这是端到端的。即,端到端的学习,就是把特征提取的任务也交给模型去做,直接输入原始数据或者经过些微预处理的数据,让模型自己进行特征提取。


表示学习

为了提高机器学习系统的准确率,我们就需要将输入信息转换为有效的特征,或者更一般性称为表示(Representation)。如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就是可以叫做表示学习(Representation Learning)

读取图片

from scipy.io import loadmat

... features_struct=loadmat( './data/Indian_pines_gt')

... print(features_struct)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值