机敏问答[复变][1] #20210615


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

幂级数

  1. 下列哪些事物对于实数情况和复数情况有本质区别?简要阐述。
    a. 一致收敛的柯西准则 b. e z e^z ez的收敛域 c. Abel定理(一点收敛推出内部的闭球上一致收敛)和收敛半径的定义 d. 幂级数 ∑ a n z n \sum a_nz^n anzn ∑ n a n z n \sum na_n z^n nanzn拥有相同收敛半径 e. 圆盘上收敛的幂级数和圆盘上“性质良好”函数的一一对应关系 f. 三角函数恒等式 g. l n ( 1 + x ) = x − x 2 2 + ⋯ ln(1+x)=x-\frac{x^2}2+\cdots ln(1+x)=x2x2+
  2. f ( z ) = ∑ a n z n f(z)=\sum a_nz^n f(z)=anzn收敛半径非零,试阐述如何估计 ∣ f ( z + Δ z ) − f ( z ) Δ z − ∑ n a n z n − 1 ∣ |\frac{f(z+\Delta z)-f(z)}{\Delta z}-\sum na_n z^{n-1}| Δzf(z+Δz)f(z)nanzn1
  3. 接上,得到 f f f任意阶可导且 f ( n ) ( 0 ) f^{(n)}(0) f(n)(0)为()
  4. 两个幂级数乘积收敛半径大于等于(),试举例说明可能不取等。待定系数法在求幂级数时常用于求什么?
  5. 复数情况的幂级数、实数情况的幂级数、傅里叶级数是什么关系?
  6. 两个幂级数复合的收敛半径可能比原来的两收敛半径最小值还小吗?可能比原来的两者最大值还大吗?
  7. 一点处非零的解析函数的倒数的收敛域如何?

答案

  1. e. 实数情况,幂级数和实解析函数不能一一对应。复数情况,幂级数和解析函数能一一对应。
    f. 可以看成无本质区别,因为三角函数作为实函数的恒等关系式可以表示成幂级数之间的恒等关系式,而收敛的实数域上幂级数可以解析扩展至复数域。解析扩展的收敛性可以用Abel定理等说明。
    g. 实数情况和复数情况的相同之处是都得到半径为1开球上的性质良好的函数。然而对于复数情况,函数可以作解析延拓,并具有复数情况独有的多值性。
  2. 绝对值中两项都取级数的前 N N N项(这一动作造成误差不超过 ϵ 3 + ϵ 3 \frac \epsilon 3+\frac \epsilon 3 3ϵ+3ϵ),再对有限项考察。
  3. n ! a n n! a_n n!an
  4. 两个幂级数各自收敛半径中较小者。 1 1 − z ⋅ ( 1 − z ) \frac 1{1-z} \cdot (1-z) 1z1(1z). 商、复合的幂级数。
  5. 限制定义域到实轴或单位圆周。
  6. 1 / ( 2 − e z ) 1/(2-e^z) 1/(2ez)有奇点 l n 2 ln2 ln2. f = 1 / ( 1 − z ) , g = 1 / ( z − 1 ) f=1/(1-z),g=1/(z-1) f=1/(1z),g=1/(z1)则复合是 ( z − 1 ) / ( z − 2 ) (z-1)/(z-2) (z1)/(z2).
  7. 可能不变(如边界既有零点又有极点),也可能变大(如 1 / ( 1 − z ) 1/(1-z) 1/(1z)

多值函数与反函数

  1. 需要反函数能取“多值”的直接动机是一些解析函数的像集中某些点的完全反像()。例如()。这种情况下,导函数非零处用反函数定理得到的是多值函数在一个区域的()。
  2. l n ∣ z ∣ , A r g z ln|z|,Argz lnz,Argz表示 L n z Lnz Lnz. 从复平面挖去什么后剩下的区域上存在 L n z Lnz Lnz的单值解析分支?(说出一种即可)
  3. L n z Lnz Lnz的各个 C − 非 负 实 轴 \mathbb{C}-非负实轴 C上的单值解析分支有什么关系?限定 0 < I m w < 0<Imw< 0<Imw<()时,得到的是 L n z Lnz Lnz的主值(支) l n z = l n ∣ z ∣ + lnz=ln|z|+ lnz=lnz+()。如何通过给定一点处的适当函数值得到多值函数 L n z Lnz Lnz的主值(支)?给定一点处的辐角值呢?
  4. 利用链式法则证明 L n z Lnz Lnz任意一个单值解析分支的导函数都是 1 / z 1/z 1/z. 由此利用路径积分对 L n z Lnz Lnz任意一个单值分支给出显式定义。
  5. 由于()是单值函数,所以通过复合,在 L n z Lnz Lnz可以分出单值分支的区域上, z 1 / 2 z^{1/2} z1/2也可分出单值分支。考虑2.中的区域, z 1 / 2 z^{1/2} z1/2的()个单值分支用 l n ∣ z ∣ , a r g z ln|z|,argz lnz,argz表示为()。
  6. 如果用 f ( z ) f(z) f(z)表示 z 1 / 2 z^{1/2} z1/2的一个单值解析分支,那么 − f ( z ) -f(z) f(z)含义是什么?从而 a − b = ( f ( a ) + f ( b ) ) ( f ( a ) − f ( b ) ) a-b=(f(a)+f(b))(f(a)-f(b)) ab=(f(a)+f(b))(f(a)f(b))可以说明如果什么成立时 a = b a=b a=b一定成立?
  7. L n z Lnz Lnz的黎曼曲面形如()(说出一种合理的喻体)。想象你处在 z 1 / 2 , z 1 / 3 , L n z z^{1/2},z^{1/3},Lnz z1/2,z1/3,Lnz之一的黎曼曲面上,可以自由行动,且你始终知道()到你所处位置的辐角,并有能力分辨你当前所处的曲面局部在之前是否到达过,你怎么分辨这三种曲面?
  8. i i , A r c c o s z i^i,Arccosz ii,Arccosz表示成多值函数,解释多值性来源。(参考:反双曲余弦函数的一支: l n ( x + x 2 − 1 ) ln(x+\sqrt{x^2-1}) ln(x+x21 )
  9. f f f是单连通区域上解析函数,简要说明记号 f ( z ) n \sqrt[n]{f(z)} nf(z) 的合理之处和不合理之处。
  10. 什么是“单叶区域”?写出4个可行的 w = f ( z ) = 1 2 ( z + 1 z ) w=f(z)=\frac 12(z+\frac 1z) w=f(z)=21(z+z1)的单叶区域。试考察上半平面中一条原点出发的射线在映射 f f f下的像集。
  11. 对多值函数 w = z ( z − 1 ) w=\sqrt{z(z-1)} w=z(z1) ,直接写出 ∣ w ∣ |w| w A r g w Argw Argw的表达式,并考察从一点出发绕一闭曲线后, A r g w Argw Argw a r g w argw argw何时发生变化,从而给出 z ( z − 1 ) \sqrt{z(z-1)} z(z1) 的一个可能的有单值分支的区域。

答案

  1. 不是单点集,解析函数 z 2 z^2 z2(例子不唯一),单值解析分支。
  2. L n z = l n ∣ z ∣ + i A r g z Lnz = ln|z|+iArgz Lnz=lnz+iArgz. 略。
  3. 相差常数 i 2 k π , k ∈ Z i2k\pi,k\in \mathbb{Z} i2kπ,kZ. 2 π 2\pi 2π i a r g z iargz iargz. 略。
  4. e f ( z ) = z e^{f(z)}=z ef(z)=z两边求导。 f ( z ) = ∫ z 0 z d w / w + f ( z 0 ) f(z)=\int_{z_0}^z dw/w+f(z_0) f(z)=z0zdw/w+f(z0)
  5. e z e^z ez,2, z 1 / 2 = e x p ( l n ∣ z ∣ 2 + i a r g z 2 + i k π ) , k = 0 或 1 z^{1/2} = exp(\frac {ln|z|} 2 + \frac {iargz} 2 + ik\pi),k=0或1 z1/2=exp(2lnz+2iargz+ikπ),k=01
  6. 另一个单值解析分支。略。
  7. 旋转楼梯,支点(原点或无穷远点),利用周期性
  8. i i = e − π / 2 + 2 k π , k ∈ Z i^i = e^{-\pi/2 + 2k\pi},k\in\mathbb{Z} ii=eπ/2+2kπ,kZ
    A r c c o s z = 1 i L n ( z + z 2 − 1 ) Arccosz = \frac 1i Ln(z+\sqrt{z^2-1}) Arccosz=i1Ln(z+z21 ),注意这里多值性有两个来源:根号和 L n Ln Ln
  9. 存在不唯一。
  10. 略。单位圆盘、单位圆盘之外、上半平面、下半平面(等)。设 z = r e i θ z=re^i\theta z=reiθ,则 f ( z ) = 1 2 ( z + 1 z ) = ⋯ = 1 2 ( r + 1 r ) c o s θ + i 2 ( r − 1 r ) s i n θ f(z)=\frac 12 (z+\frac 1z)=\cdots=\frac 12(r+\frac 1r)cos\theta +\frac i2 (r-\frac 1r)sin\theta f(z)=21(z+z1)==21(r+r1)cosθ+2i(rr1)sinθ u 2 c o s 2 θ − v 2 s i n 2 θ = 1 \frac {u^2}{cos^2\theta}-\frac{v^2}{sin^2\theta}=1 cos2θu2sin2θv2=1.
  11. ∣ w ∣ = ∣ z ∣ 1 2 ∣ z − 1 ∣ 1 2 , A r g w = 1 2 ( A r g z + A r g ( z − 1 ) ) |w|=|z|^{\frac 12}|z-1|^{\frac 12},Argw=\frac 12(Argz+Arg(z-1)) w=z21z121,Argw=21(Argz+Arg(z1)) A r g w Argw Argw总发生变化而 a r g w argw argw当且仅当闭曲线只包含0和1中一个点时变化 π \pi π.

分式线性变换

  1. 分式线性变换 a z + b c z + d \frac{az+b}{cz+d} cz+daz+b何时是 C \mathbb{C} C上的解析函数?简要说明分式线性变换群的含义。“群”的定义对分式线性变换 a z + b c z + d \frac{az+b}{cz+d} cz+daz+b中的 a , b , c , d a,b,c,d a,b,c,d有何要求?
  2. 二阶行列式为1的复矩阵群到分式线性变换群是几对1的映射?为什么?
  3. 构造 z − z 1 z − z 3 \frac{z-z_1}{z-z_3} zz3zz1 z − z 1 z − z 3 / z 2 − z 1 z 2 − z 3 \frac{z-z_1}{z-z_3}/\frac{z_2-z_1}{z_2-z_3} zz3zz1/z2z3z2z1的目的是使得 z i z_i zi的像如何?接着根据分式线性变换群的什么性质可以证明对于 C ˉ \bar \mathbb{C} Cˉ中任意两组三个两两不同的点 z 1 , z 2 , z 3 ; w 1 , w 2 , w 3 z_1,z_2,z_3;w_1,w_2,w_3 z1,z2,z3;w1,w2,w3有什么结论?
  4. 基本分式线性变换中,哪些近似于解析函数在导数不为零局部处的行为?哪个是特有的?说出一个将分式线性变换分解为基本分式线性变换的好处。
  5. 对称映射是分式线性变换吗?简要说明理由。
  6. 解释圆的定向和直线的定向。
  7. 定义交比,并指出 L ( z ) L(z) L(z)如果是 z z z和三个已知点的交比 ( z , a , b , c ) (z,a,b,c) (z,a,b,c),那么 L L L把什么点映为 0 , 1 , ∞ 0,1,\infty 0,1,?(不同老师和教材定义交比顺序可能不同)对一点 z 0 z_0 z0,分别考察 L ( z 0 ) L(z_0) L(z0) 0 , 1 , ∞ 0,1,\infty 0,1,,实数,虚部大于0的复数等情况,这些情况各自说明了什么?
  8. 圆或直线的一侧映射到单位圆内部的分式线性变换的通用步骤是什么?
  9. 把上半平面映到自身的分式线性变换是什么矩阵群的几何实现?如何通过7.和群的性质求出任意一条直线或圆一侧区域到任意另一条直线或圆一侧区域的分式线性变换?
  10. 为了求区域之间的解析同胚,分式线性变换能起什么作用?

答案

  1. c = 0 , a d ≠ 0 c=0,ad\neq 0 c=0,ad=0. 略。 a d − b c ≠ 0 ad-bc\neq 0 adbc=0.
  2. 2
  3. 第一步: z 1 z_1 z1的像是0, z 3 z_3 z3的像是 ∞ \infty . 第二步: z 2 z_2 z2的像是1.
    考察 z 1 , z 2 , z 3 z_1,z_2,z_3 z1,z2,z3 0 , 1 , ∞ 0,1,\infty 0,1, w 1 , w 2 , w 3 w_1,w_2,w_3 w1,w2,w3 0 , 1 , ∞ 0,1,\infty 0,1,,利用群的可逆性和封闭性。证明存在分式线性变换把 z 1 , z 2 , z 3 z_1,z_2,z_3 z1,z2,z3映射为 w 1 , w 2 , w 3 w_1,w_2,w_3 w1,w2,w3
    (其实根据二次方程最多2个根可以说明唯一)
  4. 旋转 L ( z ) = e i θ z L(z)=e^{i\theta}z L(z)=eiθz,伸缩 L ( z ) = r z , r ∈ R + L(z)=rz,r\in\mathbb{R}^+ L(z)=rz,rR+,平移 L ( z ) = z + a L(z)=z+a L(z)=z+a. L ( z ) = 1 / z L(z)=1/z L(z)=1/z. 便于考察保直线(圆),保对称,保交比等性质。
  5. 不是。不解析。
  6. 找三个互不相等的有序的点,然后略。
  7. 略。实数:共圆(共线)。虚部符号:表示在哪一侧
  8. 设圆或直线待考察一侧某一点 a a a的像是0(这样的点 a a a存在是因为分式线性变换是同胚), a a a对称点的像是 ∞ \infty . 再根据单位圆,得到合题意的必要条件(如 e i θ z − a 1 − a ˉ z e^{i\theta} \frac{z-a}{1-\bar az} eiθ1aˉzza形式),再验证充分性(如 e i θ z − a 1 − a ˉ z e^{i\theta} \frac{z-a}{1-\bar az} eiθ1aˉzza确实把单位圆内部映到单位圆内部)
  9. 实的二阶特殊线性群(行列式为1)。用单位圆架桥。
    注:求上半平面到上半平面的分式线性变换也可以通过考察实轴映到实轴,再通过解析映射保角说明 L ( z ) L(z) L(z)限制在实轴上是实值单调递增函数,求导得到所需必要条件。
  10. 化归。比如为了将()带状区域解析同胚映为圆盘,只需要将带状区域映为上半平面,这只需要考虑 f ( z ) = e z f(z)=e^z f(z)=ez将直线 I m ( z ) = θ Im(z)=\theta Im(z)=θ映射为射线 A r g f ( z ) = θ Argf(z)=\theta Argf(z)=θ

开映射定理

  1. f f f在0的邻域上能展成幂级数且零阶和一阶项为0,我们希望考察 f f f在0处性质。请证明此时 f f f为常数等价于 f f f展成幂级数为 0 + 0 + ⋯ 0+0+\cdots 0+0+
  2. 此时非常值的 f f f可以表示为一个原点附近恒不为零的解析函数与()的乘积,从而可以表示为()的正整数次幂。
  3. f ( z ) = z n f(z)=z^n f(z)=zn把0为圆心的小圆盘映射成小圆盘(实际上是 n n n对一的)。试画图示意。
  4. 根据开映射的复合仍是开映射,说明 f f f是开映射。为了说明一切解析函数都是开映射,我们还需要什么结论前置?

答案

  1. 略。
  2. z n z^n zn z h ( z ) , h ( z ) zh(z),h(z) zh(z),h(z)在原点附近非零。
  3. 扇形到圆盘。
  4. 略。解析函数总能在邻域写成幂级数展开的形式(或说解析函数一点处任意阶导均为0则解析函数恒为0)。(注:对实数情况不成立!)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值