机敏问答[复变][3] #20210626


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

连续性方法

  1. f f f在有界区域 Ω \Omega Ω闭包连续,区域上可导, f ( ∂ Ω ) f(\partial \Omega) f(Ω)包含于单位圆盘边界。首先根据()原理可以直接说明 f ( Ω ) f(\Omega) f(Ω)中任意一点模长不超过1. 现在我们考虑 f ( Ω ) f(\Omega) f(Ω)是否等于整个单位圆盘。
  2. 接上,用所谓“连续性方法”证明 f ( Ω ) f(\Omega) f(Ω)是整个圆盘:起点是一个点,然后用既开又闭是全集,“扩大”集合的大小。比如不失一般性设 f ( z 0 ) = 0 f(z_0)=0 f(z0)=0,接着我们对于任意单位圆盘中的点 r 0 e i θ 0 ( r 0 , θ 0 ∈ R ) r_0e^{i\theta_0}(r_0,\theta_0\in\mathbb R) r0eiθ0(r0,θ0R),用确界存在定理设出确界(),再证明前述确界是1.
  3. 前述过程中 f ( ∂ Ω ) f(\partial\Omega) f(Ω)的相关信息起到什么作用?
  4. 用类似的方法证明如果有限闭区间上实处处右可导函数处处右导数为0,则该函数为常数. 说出这个命题和0.的证明类似点在哪。(提示:用斜率小的斜线夹)
  5. “连续性方法”和数学归纳法有何异同?

答案

  1. 最大模
  2. i n f { r ∣ f ( z ) = r e i θ 0 无 解 } inf\{r|f(z)=re^{i\theta_0}无解\} inf{rf(z)=reiθ0}
    备注:证明 f ( Ω ) f(\Omega) f(Ω)是整个圆盘也可以通过 f ( Ω ) f(\Omega) f(Ω)连通且边界点只能是圆盘边界说明。
  3. 开映射定理要求在内点使用,而不能在区域边界使用(注:换句话说,证明 { r ∣ f ( z ) = r e i θ 0 有 解 } \{r|f(z)=re^{i\theta_0}有解\} {rf(z)=reiθ0}是闭区间仍然不够,要保证闭区间右端点只要不是1,那么就还能继续变大
  4. 考虑集合 { x ∣ f ( x ) ≤ δ x } \{x|f(x)\le \delta x\} {xf(x)δx} δ \delta δ取一系列趋向于0的数。共同点是考虑既开又闭。(不过这个命题用到的开是一个比较平凡的导数定义,而开映射定理的开是比较本质而优美的。而两个命题的“闭”用的本质上都是连续性)
  5. 同:都是“停不下来”。异:数学归纳法中, 1 + 1 + ⋯ = ∞ 1+1+\cdots=\infty 1+1+=,而“连续性方法”中,很多个正数相加可能只是有限值,不一定达到无穷。为了防止“达不到无穷”就“停下来”了,要求“开集”(如这里的开映射定理)

值域的考察

  1. (魏尔斯特拉斯)整函数(复平面上全纯)不为常数,则值域()。用刘维尔定理证明该定理的方法,和代数基本定理(用刘维尔定理的证法)有何共同点?
  2. 0.的一般版本:对于本性奇点的任意邻域,值域也稠密。方法是做类似的操作,并利用有界与()(奇点类型)的关系。(刘维尔定理是利用有界则常数,这里利用的是有界推出什么?)
  3. (皮卡小定理)接0.,值域其实()。试举例说明。
  4. (皮卡大定理)类比0.和1.的关系,直接说出皮卡大定理,并说明如何推出0.到2.各结论。
  5. (Bloch, 1924) f ∈ H o l ( D ) ∩ C ( D ˉ ) f\in Hol(D)\cap C (\bar D) fHol(D)C(Dˉ) D D D是单位圆盘)非常值, p ∈ D p\in D pD ∣ f ′ ( z ) ∣ ( 1 − ∣ z ∣ ) |f'(z)|(1-|z|) f(z)(1z)最大为 M M M,则 B ( f ( p ) , ( 3 2 − 2 ) M ) ⊂ f ( D ) B(f(p),(\frac 32-\sqrt 2)M)\subset f(D) B(f(p),(232 )M)f(D). 这里考察的值域包含某个圆盘 d i s t ( f ( ∂ D ) , f ( p ) ) dist(f(\partial D),f(p)) dist(f(D),f(p))有什么联系?为什么?
  6. 刚刚表达式 d i s t ( f ( ∂ D ) , f ( p ) ) dist(f(\partial D),f(p)) dist(f(D),f(p)) D D D能不能换成其它曲线?为什么?结论有变化吗?
  7. 为了估计单位圆盘内 f ( z ) − z f ′ ( 0 ) f(z)-zf'(0) f(z)zf(0),请用实轴上 [ 0 , 1 ] [0,1] [0,1]区间的路径积分表示上式,并利用柯西公式、模的性质对被积函数放缩,从而最终说明上式在 ∣ z ∣ 2 ∣ f ′ ∣ 1 − ∣ z ∣ \frac{|z|^2|f'|}{1-|z|} 1zz2f量级,其中 ∣ f ′ ∣ |f'| f是区域上导数最大模。(实际上,对于半径 r r r的情形,有 ∣ f ( z ) − z f ′ ( 0 ) ∣ ≤ ∣ z ∣ 2 ∣ f ′ ∣ 2 ( r − ∣ z ∣ ) |f(z)-zf'(0)|\le \frac{|z|^2|f'|}{2(r-|z|)} f(z)zf(0)2(rz)z2f
  8. 现在证明4.,不妨设 f ( p ) = 0 , f ′ ( p ) = 1 f(p)=0,f'(p)=1 f(p)=0,f(p)=1。首先根据6.,对于 p = 0 p=0 p=0的情况, B ( 0 , 1 2 ) B(0,\frac 12) B(0,21)内,有 ∣ f ( z ) ∣ ≥ ∣ f ′ ( 0 ) z ∣ − ∣ f ( z ) − z f ′ ( 0 ) ∣ ≥ ∣ z ∣ ∣ f ′ ( 0 ) ∣ − ∣ z ∣ 2 ∣ f ′ ∣ 2 ( 1 / 2 − ∣ z ∣ ) |f(z)|\ge |f'(0)z|-|f(z)-zf'(0)|\ge |z||f'(0)|-\frac{|z|^2|f'|}{2(1/2-|z|)} f(z)f(0)zf(z)zf(0)zf(0)2(1/2z)z2f. 这里选的 1 / 2 1/2 1/2这个数可以保证 ∣ f ′ ∣ |f'| f可以被 ∣ f ′ ( 0 ) ∣ = 1 |f'(0)|=1 f(0)=1估计出一个上界为()(为什么?)。这样就有了一系列不等式 ∣ f ( z ) ∣ ≥ ∣ z ∣ − ∣ z ∣ 2 1 2 − ∣ z ∣ |f(z)|\ge |z|-\frac{|z|^2}{\frac 12-|z|} f(z)z21zz2. 这里应当取适当 ∣ z ∣ |z| z使得()最()从而利用5.就得到了结论。
  9. 请对于 f ( p ) = 0 , f ′ ( p ) = 1 , p ≠ 0 f(p)=0,f'(p)=1,p\ne 0 f(p)=0,f(p)=1,p=0的情况给出证明。(提示:刚刚考虑的是单位圆盘子集 B ( 0 , 1 2 ) B(0,\frac 12) B(0,21),现在相应考察单位圆盘子集 B ( p , 1 − ∣ p ∣ 2 ) = B ( p , M 2 ) : = B ( p , r 0 ) B(p,\frac{1-|p|}2)=B(p,\frac{M}2):=B(p,r_0) B(p,21p)=B(p,2M):=B(p,r0). 当然很容易说明这确实是单位圆盘的子集)
  10. f ( B ( 0 , r ) ) = r f ′ ( 0 ) g ( B ( 0 , 1 ) ) f(B(0,r))=rf'(0)g(B(0,1)) f(B(0,r))=rf(0)g(B(0,1)),其中 g ( z ) = g(z)= g(z)=()在0处导数为1,由此可以怎么推广4.到一般的包含原点的区域?再如何用4.考察整函数?
  11. 为了用9.证明皮卡小定理,我们不妨假设整函数 f f f有-1,1两个值在值域中取不到,请证明此时存在整函数 F F F使得 e i F + e − i F 2 = c o s F = f \frac{e^{iF}+e^{-iF}}2=cosF=f 2eiF+eiF=cosF=f.
  12. 根据两个值取不到的假设,此处 F 1 : = F / π F_1:=F/\pi F1:=F/π的值域中有可数个值一定取不到了,那就是()。(回忆: A r c c o s z = 1 i L n ( z + z 2 − 1 ) Arccosz=\frac 1iLn(z+\sqrt{z^2-1}) Arccosz=i1Ln(z+z21 )
  13. 再拓展一步,若 F 1 = c o s G F_1=cosG F1=cosG,则(),从而推出和9.矛盾。

答案

  1. C \mathbb C C稠密。”远离0“,则可取倒数(当然,接下来就用刘维尔定理)
    注:利用类似思想还能证明 f f f是区域D上值域不为扩充复平面的亚纯函数,则存在D上两个解析函数的商是 f f f. 反正不为某个数就可以减一下,倒数。
    当然这个”注“中没有”远离“,只有不等于。
  2. 可去奇点(或:极点)。实际上是考虑倒数是可去奇点。
  3. 最多取不到 C \mathbb C C中的一个点。 e z e^z ez.
  4. 本性奇点的任意邻域,值域最多取不到一个例外值。特别注意整函数要么是多项式,要么在无穷远处有本性奇点(这是广义的刘维尔定理,即用刘维尔定理考察高阶导)
  5. 回忆“连续性方法”,知道为了说明值域包含某个圆盘,只需说明 ∂ D \partial D D的像到圆心距离不太小。
  6. 可以。比如改成比单位圆更小的圆盘 D 1 D_1 D1,那么 f ( D 1 ) f(D_1) f(D1)的值域就包含了某个圆盘, f ( D ) f(D) f(D)的值域更是包含该圆盘。
  7. f ( z ) − z f ′ ( 0 ) = ∫ 0 1 ( f ′ ( z t ) − f ′ ( 0 ) ) z d t f(z)-zf'(0)=\int_0^1(f'(zt)-f'(0))zdt f(z)zf(0)=01(f(zt)f(0))zdt,被积函数根据柯西公式在 ∣ z ∣ ∫ 圆 ( f ′ d w w − z t − f ′ d w w − 0 ) |z|\int_圆(\frac{f'dw}{w-zt}-\frac{f'dw}{w-0}) z(wztfdww0fdw)量级,也就是 ∣ z ∣ ∣ f ′ ∣ ∣ z t ∣ / ∣ w ∣ ∣ w − z t ∣ |z||f'||zt|/|w||w-zt| zfzt/wwzt量级,不超过 ∣ z 2 ∣ ∣ f ′ ∣ ∣ t ∣ / ( 1 − ∣ z ∣ ) |z^2||f'||t|/(1-|z|) z2ft/(1z)量级。(注意对于一般的圆盘, ∣ w ∣ = r |w|=r w=r,而围道积分的半径也相应扩大 r r r倍)
  8. ∣ f ′ ( z ) ∣ ≤ ∣ f ′ ( 0 ) ∣ 1 − 0 1 − ∣ z ∣ ≤ ( 1 − ∣ z ∣ ) − 1 ≤ 2 |f'(z)|\le |f'(0)|\frac{1-0}{1-|z|}\le (1-|z|)^{-1}\le2 f(z)f(0)1z10(1z)12,不等式右侧,大
  9. ∣ f ( z + p ) ∣ ≥ ∣ f ′ ( p ) z ∣ − ∣ f ′ ( p ) z − f ( z + p ) ∣ ≥ ∣ z ∣ ∣ f ′ ( p ) ∣ − ∣ z ∣ 2 ∣ f ′ ∣ 2 ( r 0 − ∣ z ∣ ) |f(z+p)|\ge|f'(p)z|-|f'(p)z-f(z+p)|\ge |z||f'(p)|-\frac{|z|^2 |f'|}{2(r_0-|z|)} f(z+p)f(p)zf(p)zf(z+p)zf(p)2(r0z)z2f. 其中 ∣ f ′ ∣ ≤ ∣ f ′ ( p ) ∣ 1 − ∣ p ∣ 1 − ∣ z ∣ |f'| \le |f'(p)|\frac{1-|p|}{1-|z|} ff(p)1z1p,当 ∣ z ∣ ≤ r 0 |z|\le r_0 zr0时则仍有 ∣ f ′ ∣ ≤ 2 |f'|\le 2 f2. 最后考察 ∣ z ∣ − ∣ z ∣ 2 r 0 − ∣ z ∣ |z|-\frac{|z|^2}{r_0-|z|} zr0zz2的极值点,求导得到 1 − 2 ∣ z ∣ ( r 0 − ∣ z ∣ ) + ∣ z ∣ 2 ( r 0 − ∣ z ∣ ) 2 = 0 , 2 ∣ z ∣ 2 − 4 r 0 ∣ z ∣ + r 0 2 = 0 , ∣ z ∣ / r 0 = 2 ± 2 2 1-\frac{2|z|(r_0-|z|)+|z|^2}{(r_0-|z|)^2}=0,2|z|^2-4r_0|z|+r_0^2=0,|z|/r_0=\frac{2\pm\sqrt 2}2 1(r0z)22z(r0z)+z2=0,2z24r0z+r02=0,z/r0=22±2 ,取负号得到 ∣ z ∣ = ( 1 − 2 2 ) r 0 |z|=(1-\frac {\sqrt 2}2)r_0 z=(122 )r0为极值点,此时 ∣ f ( z + p ) ∣ ≥ ( 3 − 2 ) r 0 = ( 3 2 − 2 ) M |f(z+p)|\ge (3-\sqrt 2)r_0=(\frac 32-\sqrt 2)M f(z+p)(32 )r0=(232 )M
  10. f ( r z ) r f ′ ( 0 ) \frac{f(rz)}{rf'(0)} rf(0)f(rz)。把 D D D换成包含 B ( 0 , r ) B(0,r) B(0,r)的区域,则在 B ( 0 , 1 ) B(0,1) B(0,1)上按前述构造 g ( z ) = f ( r z ) r f ′ ( 0 ) g(z)=\frac{f(rz)}{rf'(0)} g(z)=rf(0)f(rz),有 ∣ g ′ ( z ) ∣ ( 1 − ∣ z ∣ ) |g'(z)|(1-|z|) g(z)(1z)上界不小于1,从而 g g g值域中至少包含一个半径为 3 2 − 2 \frac 32 -\sqrt 2 232 的圆盘(当然,这个圆盘是以某个 g ( p ) g(p) g(p)为圆心而不一定以 g ( 0 ) g(0) g(0)为圆心),从而 f f f值域中至少包含一个半径为 r f ′ ( 0 ) ( 3 2 − 2 ) rf'(0)(\frac 32-\sqrt 2) rf(0)(232 )的圆盘。非常数整函数像集包含半径任意大的圆盘。
  11. 1 − f 2 ≠ 0 1-f^2\ne0 1f2=0,且 { 1 − f 2 ( z ) ∣ z ∈ C } \{1-f^2(z)|z\in\mathbb C\} {1f2(z)zC}为单连通集,则存在单值函数 g g g使得 g 2 = 1 − f 2 , ( f + i g ) ( f − i g ) = 1 g^2=1-f^2,(f+ig)(f-ig)=1 g2=1f2,(f+ig)(fig)=1 f + i g f+ig f+ig处处不为0,此时存在单值函数 F F F使得 e i F = f + i g e^{iF}=f+ig eiF=f+ig.
  12. 一切(当然是实数)整数。
  13. G G G的值域中有很多取不到的点构成“网格”,从而 G G G值域中不可能存在任意大的圆盘。

平均值原理和平均值不等式

  1. 柯西公式和平均值原理有何关系?用柯西公式证明是否表明此处平均值原理只能对解析函数使用?为什么?
  2. 柯西公式中的积分有方向,为什么平均值原理中的积分没有?回忆0.中的证明过程作形式上的说明。(或者说:为什么考虑相反方向围道的柯西公式不影响正负号?)
  3. 刚刚说的是对曲线上的平均值原理,它和圆盘上考察的平均值原理有何关系?
  4. 平均值不等式(解析函数圆心处的模小于等于圆环或圆盘上模平均)和平均值原理(是等式)有什么区别和联系?
  5. 平均值不等式或平均值原理最大模原理有什么联系?
  6. 用对 ∣ f ′ 2 ∣ |f'^2| f2的平均值不等式怎么考察单位圆在单叶解析函数下像的面积?用平均值不等式所得到的不等式可能取等吗?可能不取等吗?
  7. 对于无穷远点怎么叙述平均值原理?对于 n n n次多项式怎么构造无穷远处有极限的解析函数从而套用前述结论?
  8. 对于 ∣ f ∣ 2 = f f ˉ |f|^2=f\bar f f2=ffˉ,利用幂级数展开直接证明对于它的平均值不等式。

答案

  1. 二维情况,直接对以某个点为圆心的圆环用柯西公式,把第二型曲线积分转为定积分 1 2 π ∫ 0 2 π f ( z + r e i θ ) d θ \frac 1 {2\pi} \int_0^{2\pi}f(z+re^{i\theta})d\theta 2π102πf(z+reiθ)dθ,再转化为第一型曲线积分即得平均值原理。
    对实值调和函数也可使用,如推出最大模定理。
  2. 把定积分转写成第一型曲线积分时一定要保证曲线微元 d s = r d θ ds=rd\theta ds=rdθ恒正。
  3. 数学分析中第一型曲线积分和积分区域可变的二重积分的关系。
  4. 直接通过 f ( 0 ) = 1 2 π ∫ 0 2 π f ( r e i θ ) d θ f(0)=\frac 1{2\pi}\int_0^{2\pi}f(re^{i\theta})d\theta f(0)=2π102πf(reiθ)dθ两边取模给出平均值不等式(圆盘类似)。平均值不等式考察解析函数的模,而平均值原理考察调和函数(和解析函数)。解析函数的模不一定是调和函数(回忆全平面上非负调和函数为常数)。
    有意思的: ∣ f ∣ |f| f有平均值不等式, l n ∣ f ∣ ln|f| lnf f ≠ 0 f\ne0 f=0时有平均值原理。
  5. 平均值原理或平均值不等式可以推出最大模原理。
  6. f ′ 2 f'^2 f2是解析函数,有平均值等式,取模则有对 ∣ J ∣ = ∣ f ′ 2 ∣ |J|=|f'^2| J=f2的平均值不等式。可以取到不等号,比如 1 / ( 1 − z ) 1/(1-z) 1/(1z)导致面积发散。
    注: ∣ f ′ 2 ∣ = f ′ f ′ ˉ |f'^2|=f'\bar {f'} f2=ffˉ z z z求导为 f ′ ′ ( z ) f ˉ ′ ( z ) f''(z)\bar f'(z) f(z)fˉ(z),特别注意 ∂ z ˉ f ˉ ′ ( z ) \partial_{\bar z}\bar f'(z) zˉfˉ(z)不为0,故 ∣ f ′ 2 ∣ |f'^2| f2不一定调和,不能用平均值等式。
  7. 直接取一个以原点为圆心的圆。(当然,还可以以此写出平均值不等式、最大模原理)
    备注:比如说 f f f非常数在 1 < ∣ z ∣ < + ∞ 1<|z|<+\infty 1<z<+解析,则 z > 1 z>1 z>1上最大模原理成立(最大模只可能取到边界上,且可能是无穷)。 P n ( z ) / z n P_n(z)/z^n Pn(z)/zn.
  8. 提示: e i n θ d θ e^{in\theta}d\theta einθdθ积分为0. 需要交换积分和求和。注意绝对收敛性。

确定所有可能解析函数

  1. f f f在单位圆盘边界连续,单位圆盘内可导,把边界映射到单位圆盘边界。若 f f f无零点,则()。
  2. 如果把条件改成 f f f是单位圆盘到单位圆盘的映射且零点唯一为0,则证明 ∣ f ′ ( 0 ) ∣ ≤ 1 |f'(0)|\le 1 f(0)1和前述命题有何异同呢?
  3. 接0.,由零点孤立性,以及 f ( z ) / ∏ ( z − z i ) k f(z)/\prod(z-z_i)^k f(z)/(zzi)k非零且全纯(其中 k k k z i z_i zi作为零点的重数)(说出为什么?),我们直接考虑圆盘上无零点全纯函数()即可说明 f f f在一般情况是有理函数。请问上一括号构造出的函数为什么仍满足0.中的条件?
  4. 2.的本质其实是化归到常数。这里是使用乘法化归。那何时用加法化归?举出典型例子。
  5. 接上,如果使用求导化归,那么如何推广刘维尔定理?
  6. C , C ˉ , D ( 单 位 圆 盘 ) \mathbb C,\bar \mathbb C,D(单位圆盘) C,Cˉ,D()上全纯自同构(等价)分别被完全确定为()。
  7. 由()定理容易说明 C \mathbb C C D D D为何没有全纯同构。但有微分同胚比如()。
  8. 确定 C \mathbb C C到自身全纯自同胚:如果已知” f f f以线性速度增长“,那么利用3.就说明了所有可能全纯自同胚是一次多项式。如果已知 f f f以多项式速度增长(无穷远点不是本性奇点),那怎么简单说明?
  9. 接上,为什么 f f f无穷远点不是本性奇点?
  10. 由7.如何考察 C ˉ \bar \mathbb C Cˉ到自身全纯自同胚?
  11. 由1.如何考察 D D D到自身全纯自同胚?

答案

  1. f f f为常数(最小模原理)。
  2. 同:都利用了最大模原理(后一个命题是考虑 f / z f/z f/z最大模不超过1);异:后一个命题不知道边界处连续性,所以要取一列逼近单位圆的越来越大的圆。且后一个命题不知道边界是否映成边界,所以不能直接使用最小模原理,也不能直接证明出常数。
  3. 原因:比如可用幂级数展开说明。括号填: f ( z ) ∏ ( 1 − z ˉ i z z − z i ) k f(z)\prod (\frac{1-\bar z_iz}{z-z_i})^k f(z)(zzi1zˉiz)k. 原因:分式线性变换的性质(圆盘内的点的像仍是……,边界上的点仍是……)
  4. 例:考察亚纯函数时。
  5. 整函数以多项式增长(无穷远是极点)时是多项式(即某阶之后的导为0)(注:利用的是广义的柯西公式,估计各阶导。课堂强调:这种拓展也适用于Arzela-Ascoli引理中,可说明收敛的结果不但自身收敛,而且各阶导收敛)
  6. a z + b , a z + b c z + d , e i θ z − a 1 − a ˉ z az+b,\frac{az+b}{cz+d},e^{i\theta}\frac{z-a}{1-\bar az} az+b,cz+daz+b,eiθ1aˉzza
  7. 刘维尔。略。
  8. 结合代数基本定理。
  9. “值域的考察”的1.(当然,也可以直接证明无穷远处函数值趋向于无穷从而无穷远处是极点。若不然,用紧性找到聚点,则用开映射定理容易得到矛盾于单射)
  10. 分式线性变换转化为 C ˉ \bar \mathbb C Cˉ到自身且无穷到无穷的情况。
  11. 不妨设 f ( 0 ) = 0 f(0)=0 f(0)=0(否则分式线性变换),再对 f f f和其逆映射分别用1.考察,再用最大模原理。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值