机敏问答[复变][0] #20210615


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

复数域:基础知识

  1. 对于 a = r e i θ ( r , θ ∈ R ) a=re^{i\theta}(r,\theta\in\mathbb{R}) a=reiθ(r,θR) A r g a Arg a Arga并求解 z n = a z^n=a zn=a
  2. 证明共轭运算保持四则运算。对于 z = x + i y z=x+iy z=x+iy直接写出 ( x , y ) (x,y) (x,y) ( z , z ˉ ) (z,\bar z) (z,zˉ)的转换关系。
  3. A z + B z ˉ + C , A B C ≠ 0 Az+B\bar z+C,ABC\neq 0 Az+Bzˉ+C,ABC=0何时对应两个(”线性无关“的)实线性方程,何时对应一个?它们的几何意义分别是什么?
  4. 统一表示直线方程和圆方程,正确说出 z z ˉ , z , z ˉ , 1 z\bar z,z,\bar z,1 zzˉ,z,zˉ,1的系数满足的条件。
  5. 请用3.中形式表示单位圆,然后画出一对 w , 1 / w ˉ w,1/\bar w w,1/wˉ的位置,注意 z = 1 / w ˉ z=1/\bar w z=1/wˉ z w ˉ = 1 z\bar w=1 zwˉ=1. 由此说出一般情况下反演(对称)点和圆(直线)方程的联系。

答案

  1. 略。(注意 y = z − z ˉ 2 i = − i z − z ˉ 2 y= \frac{z-\bar z}{2i}=-i \frac{z-\bar z}2 y=2izzˉ=i2zzˉ
    这个转换在后面写几何图形方程,写函数的表示等时候都用到。
  2. 对应一个实线性方程等价于 A z + B z ˉ + C Az+B\bar z+C Az+Bzˉ+C的实部和虚部线性相关(特别地,例如虚部恒为0,即 C ∈ R , A = B ˉ C\in \mathbb{R},A=\bar B CR,A=Bˉ),此时方程表示直线。
    否则方程表示一点。
  3. A z z ˉ + B ˉ z + B z ˉ + C = 0 , A ∈ R , C ∈ R , B B ˉ > A C Az\bar z+\bar B z+B\bar z+C=0,A\in\mathbb{R},C\in\mathbb{R},B\bar B>AC Azzˉ+Bˉz+Bzˉ+C=0,AR,CR,BBˉ>AC
  4. 1 / z ˉ 1/\bar z 1/zˉ z z z互为反演点。圆方程是 A z z ˉ + B ˉ z + B z ˉ + C = 0 Az\bar z+\bar B z+B\bar z+C=0 Azzˉ+Bˉz+Bzˉ+C=0时,若 z , w z,w z,w互为反演点则 A z w ˉ + B ˉ z + B w ˉ + C = 0 Az\bar w+\bar B z+B\bar w +C=0 Azwˉ+Bˉz+Bwˉ+C=0. 令 A = 0 A=0 A=0得到直线的情形。

复平面的拓扑

  1. 名词解释(若是定理则需简要说明):三角不等式,完备性, e z e^z ez s i n z sinz sinz,闭包,直径,区域。
  2. 举例阐述可数个开集的交不一定是开集,这从一个侧面说明正实数集有限子集和无限子集有什么性质差别?对闭集阐述对应的结论。
  3. 用柯西准则证明闭集套定理中,若闭集直径不趋于0,会有什么影响?
  4. 利用无穷分割造闭集套,证明所有有界闭集都是紧集时,二维情况和一维情况的最大区别是什么?
  5. 请用一幅图直观展现反设紧集极限点不在集合中时,有一开覆盖没有有限子覆盖。
  6. 有界闭集 D D D的子集 A A A若()极限点,则取一 A A A的开覆盖的()限子覆盖,子覆盖中每个元素只覆盖 A A A中()限个点,从而 A A A是()限点集。(每个空都选填”有“或”无“)
  7. 开集的曲线连通等价于连通,一般集合不等价。那么这个不等价是哪一边不能推出?
  8. 举例说明单连通区域边界可能无法由有限条光滑曲线组成。
  9. 曲线连通最常见的应用方法之一就是设参数曲线,并对参数设法取确界。请利用取确界的思想证明对开集,曲线连通推出连通。
  10. 对于区域 U , V U,V U,V考察 f : U → V f:U\to V f:UV,设 f f f U U U中开集的像集总是 V V V中开集, f f f V V V中紧集的完全原像集总是 U U U中紧集,请反设 f f f不满,并连接 f ( U ) f(U) f(U)内外两点,利用取确界的思想找到矛盾。

答案

  1. 证明过程是直接展开并利用 R e ( z ) < ∣ z ∣ Re(z)<|z| Re(z)<z.
    柯西列收敛。
    注意用级数进行定义。根据完备性,证明点点收敛。
    也用级数定义。
    略(是所有……的交)。“包”很多都是“交”
    略(是个上确界)。
    道路连通(连通)的开集。
  2. 例子略。实质上是有限个正数有正的最小值,可数个正数不一定有正的最小值。可数个闭集的并不一定是闭集(需要有限个)。
  3. 不满足柯西准则题设。即使已知交集非空也不一定是单点
  4. 需要四等分而不是两等分(因为维数是2,不是1)。
  5. 在这里插入图片描述
  6. 无 有 有 有
  7. 连通不一定曲线连通
  8. 两个非空开集中各设一点,连起来,找确界,确界处的点不能在两个非空开集中任何一个中。
  9. 提示:反设找确界找到的 f ( U ) f(U) f(U)边界点 y 0 y_0 y0不属于 f ( U ) f(U) f(U),那么在曲线上找一列趋近于它的点 y n = f ( x n ) y_n=f(x_n) yn=f(xn),点集 { y n } \{y_n\} {yn}的唯一极限点是 y 0 y_0 y0,闭包是……,闭包原像是紧集,所以 { x n } \{x_n\} {xn}有收敛子列。这个子列收敛点的像是 y 0 y_0 y0,矛盾。

复函数

  1. 简要说明如何把实二元二维向量函数表示成用 z , z ˉ z,\bar z z,zˉ表示的复值函数。
  2. 以下哪些事物对于实二元二维向量函数和复函数有本质差别?
    a. 极限 b. 连续 c. 闭区间上连续函数最值定理和一致连续定理 d. 连续函数保持连通性 e. 可求偏导 f. C ∞ ( D ) C^\infty (D) C(D) g. 微分 d f ( z ) = d u + i d v = ∂ f ∂ x ( z ) d x + ∂ f ∂ y ( z ) d y df(z)=du+idv=\frac{\partial f}{\partial x}(z)dx+\frac{\partial f}{\partial y}(z)dy df(z)=du+idv=xf(z)dx+yf(z)dy h. 可导 i. 关于 z , z ˉ z,\bar z z,zˉ求导的莱布尼兹法则 j. 球边界上函数值相等时,内部存在导数为0的点。
  3. 形式上如何定义算子 ∂ ∂ z \frac{\partial}{\partial z} z?简要阐述 z , z ˉ z,\bar z z,zˉ的“独立性”及该性质的用途。
  4. ∂ f ∂ z \frac{\partial f}{\partial z} zf有三个地方可以加共轭记号,即 z z z处, f f f处,总体。阐述一共8个表达式间的相互关系。

答案

  1. f ( x , y ) = a ( x , y ) + i b ( x , y ) f(x,y)=a(x,y)+ib(x,y) f(x,y)=a(x,y)+ib(x,y)中的 a a a b b b都利用 x = z + z ˉ 2 , y = ⋯ x=\frac{z+\bar z}{2},y=\cdots x=2z+zˉ,y=写成用 z , z ˉ z,\bar z z,zˉ表达。
  2. 只有h. i. j.有本质差别。注意j.在实数情况是罗尔定理,复数情况是调和函数极值原理。复数情况对两个点的连线段考察则未必有”罗尔定理“,例如 e z e^z ez
  3. ∂ ∂ z = 1 2 ( ∂ ∂ x − i ∂ ∂ y ) \frac{\partial}{\partial z}=\frac 12(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}) z=21(xiy). 略。
  4. 8个间4组两两相等,4组间2组两两共轭,最后两组“相互独立”。

扩充复平面

  1. 在这里插入图片描述
    若对一切满足 O P = 1 OP=1 OP=1 P P P,要求 P N PN PN总经过垂直于平面过球心的圆,则球半径为?
  2. 什么是 C ˉ \bar \mathbb{C} Cˉ ∞ \infty ϵ − \epsilon- ϵ邻域 D ( ∞ , ϵ ) D(\infty,\epsilon) D(,ϵ)
  3. 引入 C ˉ \bar \mathbb{C} Cˉ的直接目的是让整个集合具有什么性质?
  4. 为了考察扩充复平面上的连续性及可导性,对于一点 z ∈ C ˉ z\in \bar \mathbb{C} zCˉ,若 f ( z ) f(z) f(z)仅在 C \mathbb{C} C上考察时无意义时需要考察什么?
  5. 如0.中图所示的球面上非北极点到平面上点的变换为什么保角?
  6. 复平面到自身的映射能诱导去除北极点的球面到自身的映射,请据此画交换图表表示。

答案

  1. 1/2
  2. C ˉ − { z ∈ C ∣ ∣ z ∣ ≤ ϵ − 1 } \bar \mathbb{C} - \{z\in \mathbb{C}||z|\le \epsilon^{-1}\} Cˉ{zCzϵ1}
  3. 紧性。
  4. f ( 1 / z ) , 1 / f ( z ) , 1 / f ( 1 / z ) f(1/z),1/f(z),1/f(1/z) f(1/z),1/f(z),1/f(1/z)中有意义者。(注:其实本质上是想让无穷远点变到0处且是同胚。我们人为选定的 1 / z 1/z 1/z这个变换其实只是一种比较自然的选择,你如果想,完全可以用 e i θ / z e^{i\theta}/z eiθ/z或者任何满足条件的变换进行定义)
  5. 提示:考察小经线和小纬线的像的大小和方向。(过程中用到相似三角形、弦切角定理等几何结论)
  6. 略。

解析函数

  1. 在区域内解析、在区域内一点解析、在区域内一点可导、在区域内一点实可微之间是什么关系?
  2. 两解析函数实部或虚部相同,则两解析函数有什么关系?
  3. 已知任何区域 Ω \Omega Ω上单叶解析函数 f f f的导数一定处处非0,据此证明单叶解析函数一定是解析同胚。
  4. 如何用导数定义说明复可导则满足C-R方程?其逆命题不成立,给出一个附加条件使得逆命题成立。
  5. 复可导定义非常强,因为它规定了任意趋近方式下的极限。通过考察一系列趋近方式,证明如果 f ( 0 ) = 0 f(0)=0 f(0)=0在原点实可微且 ∣ f ( z ) / z ∣ |f(z)/z| f(z)/z在0处极限存在,则 f f f f ˉ \bar f fˉ在原点可导。
  6. 单连通区域上的调和函数 u u u必存在共轭调和函数,请构造之,并说明其良定义。如果把共轭调和函数定义式 ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv两式右边反号,则情况发生了什么变化?
  7. 假设算子间可以做形式运算,请用 ∂ ∂ z , ∂ ∂ z ˉ \frac{\partial}{\partial z},\frac{\partial}{\partial \bar z} z,zˉ表示拉普拉斯算子并证明 l n ( x 2 + y 2 ) ln(x^2+y^2) ln(x2+y2)是调和函数。
  8. 为什么5.中非单连通区域不行?利用6.给出反例。非单连通区域上的调和函数在什么意义下会是解析函数的实部?
  9. ∂ f ∂ z \frac{\partial f}{\partial z} zf有三个地方可以加共轭记号,即 z z z处, f f f处,总体。针对解析函数阐述一共8个表达式间的相互关系。
  10. 填空:对()上实二阶连续可导处处不为零的解析函数 f f f,利用5.可证明 l n ∣ f ∣ = 1 2 l n ( f f ˉ ) ln|f|=\frac 12 ln(f\bar f) lnf=21ln(ffˉ)是()。利用 l n ∣ f ∣ ln|f| lnf作为实部构造相应()函数 h h h,则 ∣ e h ∣ = ∣ f ∣ |e^h|=|f| eh=f. 再利用()的解析函数为常数证明存在解析函数 g g g使得()。由 g g g又可构造出 k k k使得 k n = f , n ∈ N + k^n=f,n\in \mathbb{N}_+ kn=f,nN+ k k k的一个可能的表达式为()。
  11. f ( x , y ) = 3 x − y + i ( x + y ) f(x,y)=3x-y+i(x+y) f(x,y)=3xy+i(x+y)表达为两部分的和。两部分分别是解析函数和共轭后的解析函数。

答案

  1. 依次充分不必要。典型反例依次为:“分段函数”、 z z ˉ z\bar z zzˉ z ˉ \bar z zˉ
    特别关注: ∂ z z ˉ ∂ z = z ˉ \frac{\partial z\bar z}{\partial z}=\bar z zzzˉ=zˉ不能说明导函数存在 z ˉ \bar z zˉ
  2. 相差常数。
  3. 由已知(导数非0)根据实数情况的反函数存在定理得到 f − 1 f^{-1} f1存在,且得到像集 f ( Ω ) f(\Omega) f(Ω)是开集。又因为像集连通(连续函数保持连通性),从而是区域。对像集区域上定义的反函数用复导数的定义直接计算导数(或用C-R方程考察雅可比矩阵)可得其解析,并能计算出导数值。
  4. 在实轴和虚轴两个方向求微商,令两者相等。复值函数实部和虚部作为实值函数处处可微(注:当然可以用更强的条件:有连续偏导数)。(注:可微和C-R方程推出全纯直接根据定义计算即可)
  5. 提示:考察一系列射线。
  6. v ( x , y ) = ∫ γ v 0 → v ∂ u ∂ x d y − ∂ u ∂ y d x v(x,y)=\int_{\gamma_{v_0 \to v}}\frac{\partial u}{\partial x}dy-\frac{\partial u}{\partial y}dx v(x,y)=γv0vxudyyudx(注意单连通区域格林公式结合 u u u是调和函数得到良定义)
    仍然可以类似定义 v v v,此时 u + i v u+iv u+iv不是解析函数,但 u − i v u-iv uiv是。
  7. Δ = 4 ∂ 2 ∂ z ∂ z ˉ \Delta = 4 \frac{\partial ^2}{\partial z\partial \bar z} Δ=4zzˉ2,注意 x 2 + y 2 = z z ˉ x^2+y^2=z\bar z x2+y2=zzˉ.
  8. 可能出现多值性。例如 l n ( x 2 + y 2 ) ln(x^2+y^2) ln(x2+y2)调和但在环形区域上无共轭调和函数。看单连通局部。
  9. 4个是0,另4个分2组两两相等,最后两组之间共轭。
  10. 单连通区域,调和函数,解析,模为常数(注:不妨设模非零,利用 f ˉ = C / f \bar f = C/f fˉ=C/f解析得到 ∂ f ˉ / ∂ z ˉ = 0 \partial \bar f/\partial \bar z=0 fˉ/zˉ=0,再用7.即可), e g = f e^g=f eg=f k = e g / n k=e^{g/n} k=eg/n
  11. f = ( 2 + i ) z + z ˉ f=(2+i)z+\bar z f=(2+i)z+zˉ

导数的几何意义

  1. f ( z ) = u + i v f(z)=u+iv f(z)=u+iv在区域 D D D上解析且 u 3 = v u^3=v u3=v恒成立,则 f ( z ) f(z) f(z)为常数。该结论和之前说的“实部为常数”或“模为常数”推出解析函数为常数有何共同点?
  2. 解析函数Jacobi行列式恒非负,故对于区域边界保向,且在导函数()时,保持曲线间夹角和旋转关系。反解析函数相应如何?
  3. 根据()方程,解析映射的Jacobi行列式可以用导数表示为()。总结以上三条,解析映射在()处的局部近似于平移、旋转和()变换的复合。
  4. 因为()的解析函数是常数,故Jacobi行列式处处为1(保面积)的解析映射是()
  5. f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)解析且导数处处非零,将原点映射到原点,则 u ( x , y ) = 0 u(x,y)=0 u(x,y)=0在原点附近可能决定了什么样的隐函数?为什么至少能决定一个隐函数呢?
  6. 接上, u ( x , y ) = 0 u(x,y)=0 u(x,y)=0 v ( x , y ) = 0 v(x,y)=0 v(x,y)=0两条曲线一定有什么关系?你能将3. 4.推广到 u c o s θ + v s i n θ = 0 ucos\theta +vsin\theta=0 ucosθ+vsinθ=0的情况吗?
  7. 对于 f ( z ) = u ( r , θ ) + i v ( r , θ ) f(z)=u(r,\theta)+iv(r,\theta) f(z)=u(r,θ)+iv(r,θ)(即定义域用极坐标,值域用直角坐标),C-R方程 u r = v θ / r , v r = − u θ / r u_r=v_\theta/r,v_r=-u_\theta/r ur=vθ/r,vr=uθ/r和直角坐标的C-R方程有何异同?试说明其几何含义。

答案

  1. 像集都不含内点,从而 f ′ f' f需处处为零( f ′ f' f不为零的内点的像是像集的内点)。
  2. 填空:不为零(反例: z 2 z^2 z2)(注:直观地,可以用链式法则说明保角。回忆 ∂ z , ∂ z ˉ \partial_z,\partial_{\bar z} z,zˉ”相互独立“)。考察反解析函数:对边界反向,保持曲线间夹角,使旋转关系反向。
  3. C-R, ∣ f ′ ∣ 2 |f'|^2 f2,导数不为零,位似
  4. 模为常数, e i θ z + c e^{i\theta}z+c eiθz+c.
  5. 可能是 y y y关于 x x x,也可能反之。如果都不能决定,那么 ∂ u ∂ x = ∂ u ∂ y = 0 \frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0 xu=yu=0,根据C-R方程得导数为0.
  6. 由解析函数保角,得两者在原点处正交。
  7. 提示:回忆2.,这里相当于利用用正交的小线段的像的大小和方向,考察 f f f在局部是否近似为平移、旋转、位似复合。极坐标表达式中出现了 r r r,因为极坐标弧长微元是 r d θ rd\theta rdθ.
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值