GeoNet学习笔记

GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose-CVPR2018

这篇论文提出了一种联合学习深度、光流和相机姿态的无监督学习框架GeoNet。

之前的论文单独讨论深度、光流、相机姿态,没有讨论这些任务之间的相关性。

GeoNet是基于3D场景几何的本质特征,直观的解释就是——3D场景都是由静态背景(道路、房屋、树木等)和动态目标(行人、车辆等)构成的,静态背景在视频帧之间的2D投影图像完全由深度结构和相机运动决定,可以用光流模拟相机运动。动态目标的运动由相机运动和自身的运动共同决定。

GeoNet的主要贡献是:

  • 采用了一种“分而治之”的策略,分别学习刚体流和物体运动。在每个阶段用合成视图和原图的相似度误差来引导与监督学习;
  • 引入自适应几何一致性损失,通过前向-反向一致性检查,自动过滤遮挡和可能的异常值。

GeoNet指出Monodepth对所有像素一视同仁,这会影响在遮挡区域的几何一致性损失。GeoNet提出的自适应几何一致性损失能够弥补这一问题。

而另一篇估计深度和相机姿势的论文SfMLearner再考虑物体运动时使用了一个可解释的掩膜作为补偿。

通过理解3D场景的本质,将理解3D场景这一问题分解为两个子问题,即刚体流(rigid flow)和物体运动(object motion)。

为了给严格受限制的刚体流建模,定义帧i的深度图为D_i,目标帧(t)到源帧(s)的相机运动为T_{t\rightarrow s},由此来定义静态场景几何体。相对的从目标图像I_{t}到源图像I_{s}的2D刚体流表示为

K表示相机内在矩阵(camera intrinsic),p_t表示I_t中像素的齐次坐标。

GeoNet的整体网络架构如下图所示:

在DepthNet中,训练数据是时间上连续的帧I_i(i=1\sim n)整个序列作为一个mini-batch输入DepthNet

与之形成对比的是,PoseNet将整个序列在channel通道上串联作为输入,输出6DoF的相机姿态T_{t\rightarrow s}

DepthNet采用了编码器encoder+解码器decoder的结构,编码器部分以ResNet50作为基本结构,解码器部分由反卷积层构成,并且在encoder和decoder之间的相同分辨率上采用了skip connections,进行了多尺度下的预测。这样能够同时保留全局高层次特征和局部细节信息。训练数据是一组时间上连续的视频帧(已知相机内参),其中I_t是目标帧,作为参考帧,其他帧都是源帧I_sDepthNet回归得到不同分辨率下的深度图D(t)(原图大小,1/2,1/4,1/8)。


 I_t

  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值