判断一个自然数是否为素数,最先想到的是根据素数的定义,对自然数n,求2到n-1之中是否有某个数可以被n整除,如果没有则可判定其为素数,如果有则为合数。
实际判断中,并不需要判断这么多数,只要判断2到根号n之间的自然数即可。
代码如下:
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
bool isPrime=true;
if(n<=0)
{
cout<<"Please enter a positive number."<<endl;
continue;
}
if(n>=3)
{
for(int i=2; i<=sqrt(n); ++i)
{
if(n%i==0)
{
isPrime=false;
}
}
}
if(isPrime)
{
cout<<"It is a prime number."<<endl;
}
else
{
cout<<"It's not a prime number."<<endl;
}
}
return 0;
}