1. LSGE介绍
LSGE注意力机制在图像特征提取中的优点主要体现在以下几个方面:
(1) 局部特征增强:
LSGE模块通过SGE模块对输入特征进行局部增强。SGE模块将特征图分成若干组,并对每一组进行独立处理,利用全局平均池化获取每组的统计信息,并通过标准化和参数化调整,增强了特征图的局部响应,使得网络能够更好地捕捉到图像中的局部细节特征。
(2) 多尺度信息融合:
LSGE模块中的LSK注意力(LSKAtt)机制通过使用不同卷积核大小(如5x5、7x7等)和不同扩张率的卷积操作,提取输入特征的多尺度信息。这样可以有效捕捉到图像中的多尺度特征,提高模型对不同尺寸目标的感知能力。
(3) 空间特征聚合:
LSK注意力机制进一步通过全局平均池化和全局最大池化,将多尺度特征图进行聚合,并通过卷积操作进行融合,生成最终的注意力图。这个注意力图能够自适应地调整输入特征的权重,从而突出重要的特征区域,抑制不相关的信息,提高特征图的表达能力。
(4) 计算效率高:
LSGE模块在设计上充分考虑了计算效率问题。SGE模块通过分组操作,减少了计算复杂度&