YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10结合SpatialGroup注意力机制和LSKAtt形成全新的LSGE注意力机制和C2f_LSGE(全网独家创新)

102 篇文章 64 订阅 ¥89.90 ¥99.00

1. LSGE介绍

          LSGE注意力机制在图像特征提取中的优点主要体现在以下几个方面:

          (1) 局部特征增强:
          LSGE模块通过SGE模块对输入特征进行局部增强。SGE模块将特征图分成若干组,并对每一组进行独立处理,利用全局平均池化获取每组的统计信息,并通过标准化和参数化调整,增强了特征图的局部响应,使得网络能够更好地捕捉到图像中的局部细节特征。

          (2) 多尺度信息融合:
           LSGE模块中的LSK注意力(LSKAtt)机制通过使用不同卷积核大小(如5x5、7x7等)和不同扩张率的卷积操作,提取输入特征的多尺度信息。这样可以有效捕捉到图像中的多尺度特征,提高模型对不同尺寸目标的感知能力。

          (3) 空间特征聚合:
           LSK注意力机制进一步通过全局平均池化和全局最大池化,将多尺度特征图进行聚合,并通过卷积操作进行融合,生成最终的注意力图。这个注意力图能够自适应地调整输入特征的权重,从而突出重要的特征区域,抑制不相关的信息,提高特征图的表达能力。

           (4) 计算效率高:
            LSGE模块在设计上充分考虑了计算效率问题。SGE模块通过分组操作,减少了计算复杂度&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值