手把手教你使用YOLOv11训练自己数据集(含环境搭建 、数据集查找、模型训练)

 一、前言

本文内含YOLOv11网络结构图 + 训练教程 + 推理教程 + 数据集获取等有关YOLOv11的内容!

官方代码地址:https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11

二、整体网络结构图 

三、环境搭建

 项目环境如下:

            解释器:Python:3.9.19

            框   架:Pytorch:2.0.1

            系   统:Win10

            IDEA  :   Pycharm             

非常详细的YOLO11的GPU环境搭建流程:

非常详细YOLO11的GPU环境配置与运行(适用于YOLOv8)

四、数据集获取

免费数据集网站Roboflow一键导出Voc、COCO、Yolo、Csv等格式

随便下载了一个 数据集用它导出YOLO的数据集,自动给转换成txt的格式,yaml文件也已经配置好了,直接用就可以。

五、模型获取

代码地址:https://github.com/ultralytics/ultralytics

六、模型训练

下载好的模型代码用Pycharm打开后,我们需要添加自己的数据集:

train.py文件的代码我直接给出:

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO(r'D:\yolo\yolov11\ultralytics-main\datasets\yolo11.yaml')
    model.train(data=r'D:\yolo\yolov11\ultralytics-main\datasets\data.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                single_cls=False,  # 是否是单类别检测
                batch=8,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD',
                amp=True,
                project='runs/train',
                name='exp',
                )

注释:D:\yolo\yolov11\ultralytics-main\datasets\yolo11.yaml中的yolo11.yaml是我从ultralytics/cfg/models/11/yolo11.yaml中复制到datasets文件夹里的

打印模型结构:

七、全文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的,后期我会根据各种前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

YOLOv11有效涨点专栏

### YOLOv11 使用程 #### 安装配置操作指南 对于希望使用 YOLOv11 进行目标检测的研究人员和开发者来说,了解该版本的具体安装配置流程至关重要。尽管当前提供的参考资料并未直接提及 YOLOv11 版本的细节[^1],基于先前版本的经验以及社区的发展趋势,可以推测出类似的设置过程。 为了确保顺利部署 YOLOv11,在开始之前需确认环境满足最低硬件需求并已准备好必要的软件依赖项。通常情况下,这包括但不限于: - **操作系统**: 支持 Windows, Linux 和 macOS 平台; - **Python 版本**: 推荐使用 Python 3.x 或更高版本; - **CUDA 及 cuDNN (可选)**: 如果计划利用 GPU 加速,则需要预先安装合适的 CUDA 工具包及其配套库; 完成上述准备之后,按照官方文档指示下载最新发布的源码仓库或预编译二进制文件。接着依照提示执行一系列命令来初始化项目结构、安装所需的 Python 库和其他外部资源。当一切就绪后,应当能看到一个本地服务器被激活,并可通过 Web 浏览器查看到演示界面。 值得注意的是,由于不同版本之间可能存在架构上的差异,建议密切跟踪官方发布渠道获取最权威的操作指导和支持信息。此外,积极参与相关论坛和技术交流群组也有助于及时解决可能出现的各种疑问与挑战。 ```bash # 假设这是用于克隆 Git 存储库的标准指令 git clone https://github.com/example/yolov11.git cd yolov11 # 更新 pip 到最新版以避免兼容性问题 pip install --upgrade pip setuptools wheel # 根据 README.md 中给出的方法安装其余组件... ```
评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值