神经网络
sunshineTHU
这个作者很懒,什么都没留下…
展开
-
神经网络中为什么引入非线性激活函数?
如果不用激活函数(其实相当于激活函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。正因为上面的原因,我们决定引入非线性函数作为激活函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者...原创 2018-06-03 13:22:16 · 7818 阅读 · 0 评论 -
激活函数:双曲正切函数 tanh(x)
双曲正切函数等于双曲正弦与双曲余弦的比值,即tanh(x)=sinh(x)/cosh(x)=(e^(x)-e^(-x))/(e^x+e^(-x)),sinhx=(e^(x)-e^(-x))/2,coshx=(e^x+e^(-x))/2。定义域为(-∞,+∞),值域为(-1,+1)双曲正切函数(tanh)与激活函数sigmoid非常接近,且与后者具有类似的优缺点。sigmoid和tanh的主要区别在...原创 2018-06-03 13:29:10 · 17977 阅读 · 0 评论 -
N-gram模型:参数越多,可区别性越好,但同时单个参数的实例变少从而降低了可靠性
n越大,需要计算的参数越多(指数级增长),同一词的不同词义的区别性也越好;同时,对于每一个参数,实例(出现的频度)也会变少,频度越低,越不可靠。...原创 2018-06-03 13:31:45 · 1285 阅读 · 0 评论 -
Softmax 函数
Softmax函数——用于多分类神经网络输出定义假设我们有一个数组V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是 Si = eVi / ∑jeVj,也就是该元素的指数,与所有元素指数和的比值。 除了直观好理解以外,它还有更多优点。1.计算与标注样本的差距在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Los...原创 2018-06-03 13:33:52 · 431 阅读 · 0 评论 -
Sigmoid 和 Softmax 区别
sigmoid将一个real value映射到(0,1)的区间,用来做二分类。而 softmax 把一个 k 维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….),其中 bi 是一个 0~1 的常数,输出神经元之和为 1.0,所以相当于概率值,然后可以根据 bi 的概率大小来进行多分类的任务。二分类问题时 sigmoid 和 softmax 是一样的,...原创 2018-06-03 13:35:00 · 8290 阅读 · 1 评论