Softmax 函数

Softmax函数

——用于多分类神经网络输出

定义
假设我们有一个数组V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是 Si = eVi / ∑jeVj,
也就是该元素的指数,与所有元素指数和的比值。
 
除了直观好理解以外,它还有更多优点。
1.计算与标注样本的差距
在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵
Li = − log(efyi / ∑jej)
取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求。
2.计算上非常非常的方便
当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度,这个时候我们就要求Loss对每个权重矩阵的偏导,然后应用链式法则。那么这个过程的第一步,就是求Loss对score的偏导 (下面公式推导部分对于求偏导符号就用求导符号代替)
我们首先定义
Pyi = efyi / ∑jej 是选到yi的概率
Li = − log(efyi / ∑jej) 是我们之前提到的交叉熵
那么我们求Loss对score的偏导就是
∂Li / ∂fyi = − ln(efyi / ∑jej)′ 
= −1∗∑jej / efyi∗(efyi / ∑jej)′
= −1∗∑jej / efyi∗(1−∑j≠fyi ej / ∑jej)′
= −1∗∑jej / efyi∗(−1)∗∑j≠fyi ej∗(−1)∗1 / (∑jej)2∗(∑jej)′
= −1∗∑jej / efyi∗(−1)∗∑j≠fyi ej∗(−1)∗1 / (∑jej)2∗efyi 
= − ∑j≠fyi ej / ∑jej 
= − (1−Pfyi)
= Pfyi − 1
最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值