逻辑回归 Logistic Regression

又名 Logit Regression. 通常用来估计样本属于某一类的概率

1. 概率估计

【式-1】Logistic Regression模型估计概率(向量形式)

p̂ =hθ(x)=σ(θTx) p ^ = h θ ( x ) = σ ( θ T x )

其中,
σ(t)=11+exp(t) σ ( t ) = 1 1 + exp ⁡ ( − t )

当得到Logistic模型的概率估计结果之后,便可得到当前样本的类别预测结果:

【式-2】Logistic 回归模型预测

ŷ ={01if  p̂ <0.5if  p̂ 0.5 y ^ = { 0 i f     p ^ < 0.5 1 i f     p ^ ≥ 0.5

【注意】

由于当 σ(t)<0.5 σ ( t ) < 0.5 的时候 t<0 t < 0 ,反之类似,因此Logistic回归在具体判别的时候并不计算 σ() σ ( ⋅ ) 的值,而是直接在 θTx>0 θ T x > 0 的时候预测值为 1 1 ,反之为0

2. 模型训练与代价函数

1)从直观上来讲:

【式-3】单训练样本下的代价函数

c(θ)={log(p̂ )log(1p̂ )if  y=1if  y=0 c ( θ ) = { − log ⁡ ( p ^ ) i f     y = 1 − log ⁡ ( 1 − p ^ ) i f     y = 0

而cost function就是多个单样本的误差求和后平均:

【式-4】Logistic回归的代价函数 (log loss)

J(θ)=1mi=1m[y(i)log(p̂ (i))+(1y(i))log(1p̂ (i))] J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( p ^ ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − p ^ ( i ) ) ]

2)从概率和最大似然的角度来讲:

y y 的取值(0或1)可以用【式-5】来建模:

【式-5】Logistic Regression 中类别 y 的概率估计

Pr(y|x;θ)=hθ(x)y(1hθ(x))(1y) P r ( y | x ; θ ) = h θ ( x ) y ( 1 − h θ ( x ) ) ( 1 − y )

假设所有的观测样本件都是独立的,有 Likelihood function:

L(θ|x)=Pr(Y|X;θ)=iPr(yi|xi;θ)=ihθ(xi)yi(1hθ(xi))(1yi) L ( θ | x ) = P r ( Y | X ; θ ) = ∏ i P r ( y i | x i ; θ ) = ∏ i h θ ( x i ) y i ( 1 − h θ ( x i ) ) ( 1 − y i )

两遍取对数有 log likelihood (再用 1m 1 m 进行归一化):

1mlogL(θ|x)=1mlogPr(Y|X;θ) 1 m log ⁡ L ( θ | x ) = 1 m log ⁡ P r ( Y | X ; θ )

极大似然估计问题可以建模为:

 max 1mlogL(θ|x)=1mlogPr(Y|X;θ)   m a x   1 m log ⁡ L ( θ | x ) = 1 m log ⁡ P r ( Y | X ; θ )

即为

min1mi=1m[y(i)log(hθ(xi))+(1y(i))log(1hθ(xi))] min − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x i ) ) ]

即为 min J(θ) min   J ( θ ) ,与 式-4 形式一致。

在线性回归部分我们提过,线性回归问题一般有两种解决方式:1)利用闭式解求解 2)利用迭代算法求解。不幸的是,Logistic回归问题目前没有闭式解,但由于代价函数是 的,所以能够利用GD或者其他优化算法求解全局最优值:

【式-6】Logistic代价函数对第 j j 个参数的偏导数

θjJ(θ)=1mi=1m(σ(θTx(i))y(i))xj(i)

在得到 式-6 中所有参数的偏导项后记得求得梯度向量,进而由 batch GD 求解。

对 Stochastic GD 来说,每次只能利用一个样本进行计算;同样,对 mini-batch GD来说,每次需要用一个 mini-batch 进行计算。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值