很经典的一道题目,第K最短路,很多应用都会用到的一个小算法。然后解法也很多,这里用了Dijkstra+A*搜索,每次从最小堆中弹出"c[x]+f[x]"值最小的结点x来继续访问,其中c[x]为从起点访问到x点的距离,f[x]为从x点到终点的最短距离。
不过为了AC这道题目,倒是犯了几个小错误:
1:根据题目,就算给定的起点s==给定的终点t,那么必须也要走,最短路径不能为0,所以就有了讨论中很多人说的那句代码 if(s==t)k++;
2:这个错误我也搞不清楚状况,主要是用Dijkstra计算所有点到终点的最短路径时候,我一开始的代码如下,一直是wrong answer。
funcArr[beg-1] = 0;
visFlag[beg-1] = true;
PriorityQueue<HeapNode> queue = new PriorityQueue<HeapNode>(graph.size(),new Comp1());
for(int i=0;i<graph.get(beg-1).lNodes.size();i++)
{
LinkNode tlNode = graph.get(beg-1).lNodes.get(i);
funcArr[tlNode.lid-1] = tlNode.t;
queue.add(new HeapNode(tlNode.lid, funcArr[tlNode.lid-1]));
}
改为如下就AC了。难道是最近没有常写代码,都愚钝了。
funcArr[beg-1] = 0;
PriorityQueue<HeapNode> queue = new PriorityQueue<HeapNode>(graph.size(),new Comp1());
queue.add(new HeapNode(beg, 0));
最终AC的完整代码:
import java.util.*;
class Node
{
public Node()
{
lNodes = new ArrayList<LinkNode>();
}
public ArrayList<LinkNode> lNodes;
}
class LinkNode
{
public LinkNode()
{
lid = 0;
t = 0;
}
public LinkNode(int linkId, int time)
{
lid = linkId;
t = time;
}
public int lid;
public int t;
}
class HeapNode
{
public HeapNode(int nid,int cv)
{
this.nodeId = nid;
this.cvalue = cv;
}
public HeapNode()
{
}
public HeapNode(int nid, int cv, int fv)
{
nodeId = nid;
cvalue = cv;
fvalue = fv;
}
public int nodeId;
public int cvalue;
public int fvalue;
}
class Comp1 implements Comparator<HeapNode>
{
public int compare(HeapNode arg0, HeapNode arg1) {
return arg0.cvalue - arg1.cvalue;
}
}
class Comp2 implements Comparator<HeapNode>
{
public int compare(HeapNode arg0, HeapNode arg1)
{
return (arg0.cvalue + arg0.fvalue) - (arg1.cvalue + arg1.fvalue);
}
}
public class Main {
final static int MAX = 1<<30;
public static int[] Dijkstra(ArrayList<Node> graph, int beg)
{
int n = graph.size();
int funcArr[] = new int[n];
boolean visFlag[] = new boolean[n];
for(int i=0;i<n;i++)
{
funcArr[i] = MAX;
visFlag[i] = false;
}
funcArr[beg-1] = 0;
PriorityQueue<HeapNode> queue = new PriorityQueue<HeapNode>(graph.size(),new Comp1());
queue.add(new HeapNode(beg, 0));
while(queue.isEmpty() == false)
{
HeapNode tnode = queue.poll();
if(visFlag[tnode.nodeId-1] == true)
continue;
visFlag[tnode.nodeId-1] = true;
for(int i=0;i<graph.get(tnode.nodeId - 1).lNodes.size();i++)
{
LinkNode tlnode = graph.get(tnode.nodeId-1).lNodes.get(i);
if(funcArr[tnode.nodeId - 1] + tlnode.t < funcArr[tlnode.lid-1])
{
funcArr[tlnode.lid-1] = funcArr[tnode.nodeId - 1] + tlnode.t;
queue.add(new HeapNode(tlnode.lid, funcArr[tlnode.lid-1]));
}
}
}
return funcArr;
}
public static int AStartKShortestPath(ArrayList<Node> graph, int beg, int end,int k,int[] funcArr)
{
if(beg==end)k++;
int dis = -1;
int kcount = 0;
int n = graph.size();
PriorityQueue<HeapNode> queue = new PriorityQueue<HeapNode>(n,new Comp2());
queue.add( new HeapNode(beg,0,funcArr[beg-1]));
while(queue.isEmpty() == false)
{
HeapNode hNode= queue.poll();
if(hNode.nodeId == end)kcount++;
if(kcount == k)
{
//System.out.println(hNode.nodeId+":"+hNode.cvalue+","+hNode.fvalue);
dis = hNode.cvalue + hNode.fvalue;
break;
}
for(int i=0;i<graph.get(hNode.nodeId-1).lNodes.size();i++)
{
LinkNode tlNode = graph.get(hNode.nodeId-1).lNodes.get(i);
if(funcArr[tlNode.lid-1] < MAX)
{
HeapNode tmphnode = new HeapNode(tlNode.lid, hNode.cvalue + tlNode.t, funcArr[tlNode.lid-1]);
queue.add(tmphnode);
}
}
}
return dis;
}
public static void main(String[] args)
{
//Initialize the graph and transpose graph//
Scanner scan = new Scanner(System.in);
int n,m;
n = scan.nextInt();
m = scan.nextInt();
ArrayList<Node> graph = new ArrayList<Node>(n);
ArrayList<Node> tgraph = new ArrayList<Node>(n);
for(int i=0;i<n;i++)
{
graph.add(new Node());
tgraph.add(new Node());
}
for(int i=0;i<m;i++)
{
int b,e,t;
b = scan.nextInt();
e = scan.nextInt();
t = scan.nextInt();
//Graph
LinkNode tn0 = new LinkNode(e,t);
graph.get(b-1).lNodes.add(tn0);
//Transpose graph
LinkNode tn1 = new LinkNode(b,t);
tgraph.get(e-1).lNodes.add(tn1);
}
int s,t,k;
s = scan.nextInt();
t = scan.nextInt();
k = scan.nextInt();
/
int[] funcArr = Dijkstra(tgraph, t);
int dis = AStartKShortestPath(graph, s, t, k, funcArr);
System.out.println(dis);
}
}