codeforces 489D Unbearable Controversy of Being (暴力乱搞)

本文详细介绍了两种方法来解决在有向图中求解特定路径数量的问题,包括通过层数为2的BFS遍历以及利用线性代数原理优化的矩阵操作方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:点击打开链接


题目大意:

定义下图为“damn rhombus”,给定一个有向图,求出有多少个“damn rhombus”。



解题思路1:

分析可以得出其实“damn rhombus”的意思就是求a->c通过2个节点中转的个数。也就是说 如果a->c中间中转了x个点,那么对于点对(a,c)来说“damn rhombus”就有C(x,2)个。

那么通过层数为2的bfs就可以得出答案。

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define INF 0x7f7f7f7f
#define maxn 3010
#define maxm 30010
using namespace std;
struct Edge
{
    int to;
    int next;
}es[maxm];
int cnt,p[maxn];
int used[maxn];
int n,m;

void add(int x,int y)
{
    es[cnt].to = y;
    es[cnt].next = p[x];
    p[x] = cnt++;

}
long long bfs(int x)
{
    memset(used,0,sizeof used);
    queue <int > q;
    for(int i = p[x];i+1;i = es[i].next)
     q.push(es[i].to);
    while(!q.empty())
    {
        int t = q.front();
        q.pop();
        for(int i = p[t];i+1;i = es[i].next)
        if(es[i].to != x) used[es[i].to]++;
    }
    long long res = 0;
    for(int i = 1;i <= n;i++) if(used[i] >= 2) res += (used[i]-1)*used[i]/2;
    return res;
}

int main()
{
    scanf("%d %d",&n,&m);

    memset(p,-1,sizeof p);
    for(int i = 0;i < m;i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        add(x,y);
    }
    long long ans = 0;
    for(int i = 1;i <= n;i++)
    {
        ans += bfs(i);
    }
    printf("%d\n",ans);

    return 0;
}


解题思路2:

我在比赛的时候想到了一个很奇葩的做法。虽然被上面的代码skipped了。但是事实上是可以过的。悲伤的表情。

构造矩阵A。 A[i][j]表示从i->j不经过中转的路径数目。

那么学过线性代数的都知道,这个矩阵自乘的结果其实就是a[i][j]表示i->j经过一次中转的路径条数。只需要加一个优化就居然可以让O(n3)的代码过掉。

真的代码不要太短。

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
long long  a[3010][3010];
long long res[3010][3010];
int n,m;
int main()
{
    scanf("%d %d",&n,&m);
    for(int i = 0;i < m;i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        a[x][y]++;
    }
    for(int k = 1;k <= n;k++)
        for(int i = 1;i <= n;i++)
        {
            if(a[i][k] == 0) continue;//优化
            for(int j = 1;j <= n;j++)
                res[i][j] += a[i][k]*a[k][j];
        }
    long long ans = 0;
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
        {
            if(i == j) continue;
            ans += (res[i][j]*(res[i][j]-1))/2;
        }
    printf("%d\n",ans);
    return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值