逻辑回归详解

一、广义线性模型

1.1 指数分布族

一维的指数分布族: f λ ( y ) = exp ⁡ { λ y − Ψ ( λ ) } ⋅ f 0 ( y ) (1) f_{\lambda}(y)=\exp\{\lambda y-\Psi(\lambda)\}\cdot f_0(y)\tag1 fλ(y)=exp{ λyΨ(λ)}f0(y)(1)

1.2 常见的指数分布:

  • N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),化成指数分布的话, λ = μ σ 2 , Ψ ( λ ) = μ 2 σ 2 \lambda=\frac{\mu}{\sigma^2}, \Psi(\lambda)=\frac{\mu}{2\sigma^2} λ=σ2μ,Ψ(λ)=2σ2μ
  • P o i ( μ ) Poi(\mu) Poi(μ),化成指数分布的话, λ = ln ⁡ μ , Ψ ( λ ) = μ \lambda=\ln \mu, \Psi(\lambda)=\mu λ=lnμ,Ψ(λ)=μ
  • B i ( n , π ) Bi(n, \pi) Bi(n,π),化成指数分布的话, λ = ln ⁡ π 1 − π , Ψ ( λ ) = n ln ⁡ ( 1 + e λ ) \lambda=\ln\frac{\pi}{1-\pi}, \Psi(\lambda)=n\ln(1+e^\lambda) λ=ln1ππ,Ψ(λ)=nln(1+eλ)

1.3 广义线性模型

广义线性模型就是解决响应变量是服从二项分布、泊松分布或理论上是任何指数分布族的线性拟合问题。

现有 N N N个观测点 y = { y 1 , ⋯   , y N } \bm y=\{y_1,\cdots,y_N\} y={ y1,,yN}来自某一指数分布族,即 y i ∼ f λ i ( ⋅ ) , i = 1 , ⋯   , N (2) y_i\sim f_{\lambda_i}(\cdot), i=1,\cdots,N\tag2 yifλi(),i=1,,N(2)
此时需要估计 N N N个参数 λ 1 , ⋯   , λ N \lambda_1,\cdots,\lambda_N λ1,,λN(观测点独立,但不同分布,具体的 λ i \lambda_i λi不同)

通过线性回归,将 N N N个参数的问题,转化为对 p p p个参数的估计,这就是广义线性模型的核心策略。如下:

λ = X α (3) \bm\lambda=\bm X\bm\alpha\tag3 λ=Xα(3)
其中, X \bm X X N × p N\times p N×p的结构矩阵, α \bm\alpha α p p p维未知参数。

[ λ 1 λ 2 ⋮ λ N ] = [ x 1 x 2 ⋮ x N ] N × p [ α 1 α 2 ⋮ α p ] p × 1 (4) \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots\\ \lambda_N \end{bmatrix}=\begin{bmatrix} \bm x_1 \\ \bm x_2 \\ \vdots\\ \bm x_N \end{bmatrix}_{N\times p}\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots\\ \alpha_p \end{bmatrix}_{p\times 1}\tag4 λ1λ2λN=x1x2xNN×pα1α2αpp×1(4)
亦即 λ 1 = x 1 ⊤ α \lambda_1=\bm x_1^\top\bm\alpha λ1=x1α λ 2 = x 2 ⊤ α \lambda_2=\bm x_2^\top\bm\alpha λ2=x2α ⋯ \cdots λ N = x N ⊤ α \lambda_N=\bm x_N^\top\bm\alpha λN=xNα。例如, λ 1 = x 11 α 1 + x 12 α 2 + ⋯ + x 1 p α p \lambda_1=x_{11}\alpha_1+x_{12}\alpha_2+\cdots+x_{1p}\alpha_p λ1=x11α<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值