一、广义线性模型
1.1 指数分布族
一维的指数分布族: f λ ( y ) = exp { λ y − Ψ ( λ ) } ⋅ f 0 ( y ) (1) f_{\lambda}(y)=\exp\{\lambda y-\Psi(\lambda)\}\cdot f_0(y)\tag1 fλ(y)=exp{ λy−Ψ(λ)}⋅f0(y)(1)
1.2 常见的指数分布:
- N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),化成指数分布的话, λ = μ σ 2 , Ψ ( λ ) = μ 2 σ 2 \lambda=\frac{\mu}{\sigma^2}, \Psi(\lambda)=\frac{\mu}{2\sigma^2} λ=σ2μ,Ψ(λ)=2σ2μ
- P o i ( μ ) Poi(\mu) Poi(μ),化成指数分布的话, λ = ln μ , Ψ ( λ ) = μ \lambda=\ln \mu, \Psi(\lambda)=\mu λ=lnμ,Ψ(λ)=μ
- B i ( n , π ) Bi(n, \pi) Bi(n,π),化成指数分布的话, λ = ln π 1 − π , Ψ ( λ ) = n ln ( 1 + e λ ) \lambda=\ln\frac{\pi}{1-\pi}, \Psi(\lambda)=n\ln(1+e^\lambda) λ=ln1−ππ,Ψ(λ)=nln(1+eλ)
1.3 广义线性模型
广义线性模型就是解决响应变量是服从二项分布、泊松分布或理论上是任何指数分布族的线性拟合问题。
现有 N N N个观测点 y = { y 1 , ⋯ , y N } \bm y=\{y_1,\cdots,y_N\} y={
y1,⋯,yN}来自某一指数分布族,即 y i ∼ f λ i ( ⋅ ) , i = 1 , ⋯ , N (2) y_i\sim f_{\lambda_i}(\cdot), i=1,\cdots,N\tag2 yi∼fλi(⋅),i=1,⋯,N(2)
此时需要估计 N N N个参数 λ 1 , ⋯ , λ N \lambda_1,\cdots,\lambda_N λ1,⋯,λN(观测点独立,但不同分布,具体的 λ i \lambda_i λi不同)
通过线性回归,将 N N N个参数的问题,转化为对 p p p个参数的估计,这就是广义线性模型的核心策略。如下:
设 λ = X α (3) \bm\lambda=\bm X\bm\alpha\tag3 λ=Xα(3)
其中, X \bm X X为 N × p N\times p N×p的结构矩阵, α \bm\alpha α为 p p p维未知参数。
即 [ λ 1 λ 2 ⋮ λ N ] = [ x 1 x 2 ⋮ x N ] N × p [ α 1 α 2 ⋮ α p ] p × 1 (4) \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots\\ \lambda_N \end{bmatrix}=\begin{bmatrix} \bm x_1 \\ \bm x_2 \\ \vdots\\ \bm x_N \end{bmatrix}_{N\times p}\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots\\ \alpha_p \end{bmatrix}_{p\times 1}\tag4 ⎣⎢⎢⎢⎡λ1λ2⋮λN⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡x1x2⋮xN⎦⎥⎥⎥⎤N×p⎣⎢⎢⎢⎡α1α2⋮αp⎦⎥⎥⎥⎤p×1(4)
亦即 λ 1 = x 1 ⊤ α \lambda_1=\bm x_1^\top\bm\alpha λ1=x1⊤α, λ 2 = x 2 ⊤ α \lambda_2=\bm x_2^\top\bm\alpha λ2=x2⊤α, ⋯ \cdots ⋯, λ N = x N ⊤ α \lambda_N=\bm x_N^\top\bm\alpha λN=xN⊤α。例如, λ 1 = x 11 α 1 + x 12 α 2 + ⋯ + x 1 p α p \lambda_1=x_{11}\alpha_1+x_{12}\alpha_2+\cdots+x_{1p}\alpha_p λ1=x11α<