天梯地图
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。输入格式:
输入在第一行给出两个正整数N(2 \le≤ N \le≤ 500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:
V1 V2 one-way length time
其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。
输出格式:
首先按下列格式输出最快到达的时间T和用节点编号表示的路线:
Time = T: 起点 => 节点1 => ... => 终点
然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:
Distance = D: 起点 => 节点1 => ... => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
如果这两条路线是完全一样的,则按下列格式输出:
Time = T; Distance = D: 起点 => 节点1 => ... => 终点
输入样例1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5
提交三遍才过,,然后前两次全部贡献给输出格式了。。。
说说这个题,,典型的最短路,只不过在最短路径的基础上加了一些附加条件。。
总结:细心最重要
#include <iostream>
#include <cstdio>
#include <cstring>
#define inf 99999999
using namespace std;
int tmap[505][505],lmap[505][505];
int tdis[505],ldis[505],vis[505];
int tpre[505],lpre[505],dis[505],node[505];
int n,m,s,e;
void t_dijkstra()
{
int i,j,v,mmin;
for(i=0;i<n;i++){
tdis[i]=tmap[s][i];
dis[i]=lmap[s][i];
tpre[i]=s;
}
tpre[s]=-1;
for(i=1;i<n;i++)
{
mmin=inf;
for(j=0;j<n;j++)
{
if(tdis[j]<mmin&&!vis[j])
{
mmin=tdis[j];
v=j;
}
}
if(mmin==inf)
break;
vis[v]=1;
for(j=0;j<n;j++)
{
if(tmap[v][j]<inf&&!vis[j])
{
if(tdis[j]>tdis[v]+tmap[v][j])
{
tdis[j]=tdis[v]+tmap[v][j];
tpre[j]=v;
dis[j]=dis[v]+lmap[v][j];
}
else if(tdis[j]==tdis[v]+tmap[v][j])
{
if(dis[j]>dis[v]+lmap[v][j])
{
dis[j]=dis[v]+lmap[v][j];
tpre[j]=v;
}
}
}
}
}
}
void l_dijkstra()
{
int i,j,v,mmin;
for(i=0;i<n;i++){
ldis[i]=lmap[s][i];
node[i]=2;
lpre[i]=s;
}
node[s]=1;
lpre[s]=-1;
for(i=1;i<n;i++)
{
mmin=inf;
for(j=0;j<n;j++)
{
if(ldis[j]<mmin&&!vis[j])
{
mmin=ldis[j];
v=j;
}
}
if(mmin==inf)
break;
vis[v]=1;
for(j=0;j<n;j++)
{
if(lmap[v][j]<inf&&!vis[j])
{
if(ldis[j]>ldis[v]+lmap[v][j])
{
ldis[j]=ldis[v]+lmap[v][j];
node[j]=node[v]+1;
lpre[j]=v;
}
else if(ldis[j]==ldis[v]+lmap[v][j])
{
if(node[j]>node[v]+1)
{
node[j]=node[v]+1;
lpre[j]=v;
}
}
}
}
}
}
void t_print(int x)
{
if(tpre[x]==-1)
return ;
t_print(tpre[x]);
printf(" %d =>",tpre[x]);
}
void l_print(int x)
{
if(lpre[x]==-1)
return ;
l_print(lpre[x]);
printf(" %d =>",lpre[x]);
}
int main()
{
int i,j,u,v,f,l,t;
scanf("%d%d",&n,&m);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
tmap[i][j]=lmap[i][j]=inf;
if(i==j)
tmap[i][j]=lmap[i][j]=0;
}
for(i=0;i<m;i++)
{
scanf("%d%d%d%d%d",&u,&v,&f,&l,&t);
if(f==1)
{
if(tmap[u][v]>t)
tmap[u][v]=t;
if(lmap[u][v]>l)
lmap[u][v]=l;
}
else
{
if(tmap[u][v]>t)
tmap[u][v]=tmap[v][u]=t;
if(lmap[u][v]>l)
lmap[u][v]=lmap[v][u]=l;
}
}
scanf("%d%d",&s,&e);
memset(vis,0,sizeof(vis));
t_dijkstra();
memset(vis,0,sizeof(vis));
l_dijkstra();
int flag=0;
for(i=0;i<n;i++)
if(tpre[i]!=lpre[i])
{
flag=1;
break;
}
if(flag)
{
printf("Time = %d:",tdis[e]);
t_print(e);
printf(" %d\n",e);
printf("Distance = %d:",ldis[e]);
l_print(e);
printf(" %d\n",e);
}
else
{
printf("Time = %d; Distance = %d:",tdis[e],ldis[e]);
t_print(e);
printf(" %d\n",e);
}
return 0;
}