天梯 L3-007

              天梯地图

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。
输入格式:

输入在第一行给出两个正整数N(2 \le≤ N \le≤ 500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:
V1 V2 one-way length time
其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。
输出格式:

首先按下列格式输出最快到达的时间T和用节点编号表示的路线:
Time = T: 起点 => 节点1 => ... => 终点
然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:
Distance = D: 起点 => 节点1 => ... => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
如果这两条路线是完全一样的,则按下列格式输出:
Time = T; Distance = D: 起点 => 节点1 => ... => 终点
输入样例1:

10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:

Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:

7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:

Time = 3; Distance = 4: 3 => 2 => 5






提交三遍才过,,然后前两次全部贡献给输出格式了。。。
说说这个题,,典型的最短路,只不过在最短路径的基础上加了一些附加条件。。

总结:细心最重要


#include <iostream>
#include <cstdio>
#include <cstring>
#define inf 99999999

using namespace std;

int tmap[505][505],lmap[505][505];
int tdis[505],ldis[505],vis[505];
int tpre[505],lpre[505],dis[505],node[505];
int n,m,s,e;

void t_dijkstra()
{
    int i,j,v,mmin;
    for(i=0;i<n;i++){
        tdis[i]=tmap[s][i];
        dis[i]=lmap[s][i];
        tpre[i]=s;
    }
    tpre[s]=-1;
    for(i=1;i<n;i++)
    {
        mmin=inf;
        for(j=0;j<n;j++)
        {
            if(tdis[j]<mmin&&!vis[j])
            {
                mmin=tdis[j];
                v=j;
            }
        }
        if(mmin==inf)
            break;
        vis[v]=1;
        for(j=0;j<n;j++)
        {
            if(tmap[v][j]<inf&&!vis[j])
            {
                if(tdis[j]>tdis[v]+tmap[v][j])
                {
                    tdis[j]=tdis[v]+tmap[v][j];
                    tpre[j]=v;
                    dis[j]=dis[v]+lmap[v][j];
                }
                else if(tdis[j]==tdis[v]+tmap[v][j])
                {
                    if(dis[j]>dis[v]+lmap[v][j])
                    {
                        dis[j]=dis[v]+lmap[v][j];
                        tpre[j]=v;
                    }
                }
            }
        }
    }
}

void l_dijkstra()
{
    int i,j,v,mmin;
    for(i=0;i<n;i++){
        ldis[i]=lmap[s][i];
        node[i]=2;
        lpre[i]=s;
    }
    node[s]=1;
    lpre[s]=-1;
    for(i=1;i<n;i++)
    {
        mmin=inf;
        for(j=0;j<n;j++)
        {
            if(ldis[j]<mmin&&!vis[j])
            {
                mmin=ldis[j];
                v=j;
            }
        }
        if(mmin==inf)
            break;
        vis[v]=1;
        for(j=0;j<n;j++)
        {
            if(lmap[v][j]<inf&&!vis[j])
            {
                if(ldis[j]>ldis[v]+lmap[v][j])
                {
                    ldis[j]=ldis[v]+lmap[v][j];
                    node[j]=node[v]+1;
                    lpre[j]=v;
                }
                else if(ldis[j]==ldis[v]+lmap[v][j])
                {
                    if(node[j]>node[v]+1)
                    {
                        node[j]=node[v]+1;
                        lpre[j]=v;
                    }
                }
            }
        }
    }
}

void t_print(int x)
{
    if(tpre[x]==-1)
        return ;
    t_print(tpre[x]);
    printf(" %d =>",tpre[x]);
}

void l_print(int x)
{
    if(lpre[x]==-1)
        return ;
    l_print(lpre[x]);
    printf(" %d =>",lpre[x]);
}
int main()
{
    int i,j,u,v,f,l,t;
    scanf("%d%d",&n,&m);
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
    {
        tmap[i][j]=lmap[i][j]=inf;
        if(i==j)
            tmap[i][j]=lmap[i][j]=0;
    }
    for(i=0;i<m;i++)
    {
        scanf("%d%d%d%d%d",&u,&v,&f,&l,&t);
        if(f==1)
        {
            if(tmap[u][v]>t)
            tmap[u][v]=t;
            if(lmap[u][v]>l)
            lmap[u][v]=l;
        }
        else
        {
            if(tmap[u][v]>t)
            tmap[u][v]=tmap[v][u]=t;
            if(lmap[u][v]>l)
            lmap[u][v]=lmap[v][u]=l;
        }
    }
    scanf("%d%d",&s,&e);
    memset(vis,0,sizeof(vis));
    t_dijkstra();
    memset(vis,0,sizeof(vis));
    l_dijkstra();
    int flag=0;
    for(i=0;i<n;i++)
        if(tpre[i]!=lpre[i])
    {
        flag=1;
        break;
    }
    if(flag)
    {
        printf("Time = %d:",tdis[e]);
        t_print(e);
        printf(" %d\n",e);
        printf("Distance = %d:",ldis[e]);
        l_print(e);
        printf(" %d\n",e);
    }
    else
    {
        printf("Time = %d; Distance = %d:",tdis[e],ldis[e]);
        t_print(e);
        printf(" %d\n",e);
    }
    return 0;
}



### 关于天梯地图深度优先搜索(DFS)算法的实现 对于给定的地图,可以采用深度优先搜索(DFS)遍历所有可能路径来解决问题。此方法适用于探索迷宫、连通性检测等问题,在本场景下用于模拟玩家在天梯赛中的进展。 #### 初始化设置 首先定义方向数组 `directions` 来简化移动逻辑,该数组包含了四个基本行走方向:上、右、下、左。这有助于后续代码简洁化处理[^1]。 ```python # 定义上下左右四个方向 directions = [(0, 1), (1, 0), (-1, 0), (0, -1)] ``` #### 主函数设计 创建一个名为 `dfs` 的递归函数来进行深度优先搜索。参数应包括当前坐标 `(x, y)` 和已访问节点集合 `visited` 。每当到达一个新的位置时,将其加入到 `visited` 中并继续尝试向四周扩展;如果遇到边界或障碍物则停止前进。当找到目标终点后返回成功标志位 True 或者累计符合条件的结果数量[^2]。 #### 边界条件判断 每次进入新的格子前都需要检查是否越过了地图范围或是撞上了墙壁等不可通行区域。此外还需要确认当前位置未曾被其他路线所经过以免形成环路造成死循环[^3]。 #### 结果统计与输出 终通过调用上述构建好的 dfs 函数计算出总的可行解数目,并按照指定格式打印出来作为答案的一部[^4]。 ```python def count_paths(maze, start, end): n_rows = len(maze) n_cols = len(maze[0]) visited = set() def is_valid(x, y): return ( 0 <= x < n_rows and 0 <= y < n_cols and maze[x][y] != &#39;#&#39; and (x, y) not in visited ) def dfs(current_x, current_y): nonlocal path_count if (current_x, current_y) == end: path_count += 1 return for dx, dy in directions: next_x, next_y = current_x + dx, current_y + dy if is_valid(next_x, next_y): visited.add((next_x, next_y)) dfs(next_x, next_y) visited.remove((next_x, next_y)) # Backtrack path_count = 0 visited.add(start) dfs(*start) return path_count ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值