识别九宫格验证码图片的坐标位置

本文介绍了如何使用Python和OpenCV库识别九宫格验证码图片的坐标位置。通过加载图片、预处理、查找轮廓和计算边界框,可以获取每个小图像块的坐标,从而实现自动化流程和图像识别任务。
摘要由CSDN通过智能技术生成

九宫格验证码是一种常见的验证码形式,通常用于验证用户的身份。在本文中,我们将介绍如何使用Python和OpenCV库来自动识别九宫格验证码图片中的坐标位置。这项技术对于自动化流程和图像识别任务非常有用。

步骤一:加载并预处理验证码图片

首先,我们需要加载九宫格验证码图片并对其进行预处理。以下是代码示例:


import cv2

# 加载验证码图片
image = cv2.imread('captcha.png')

# 将图像转为灰度
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用阈值处理,将图像转换为二值图像
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)
步骤二:识别坐标位置

接下来,我们将使用OpenCV来查找九宫格的坐标位置。在这种类型的验证码中,通常有九个小图像块,每个块对应一个位置。以下是代码示例:


# 查找所有轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 初始化九宫格坐标列表
grid_coordinates = []

# 遍历每个轮廓
for contour in contours:
    # 计算轮廓的面积
    area = cv2.contourArea(contour)
    if area > 100:  # 通过调整面积阈值来筛选合适的轮廓
        # 获取轮廓的边界框
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值