九宫格验证码是一种常见的验证码形式,通常用于验证用户的身份。在本文中,我们将介绍如何使用Python和OpenCV库来自动识别九宫格验证码图片中的坐标位置。这项技术对于自动化流程和图像识别任务非常有用。
步骤一:加载并预处理验证码图片
首先,我们需要加载九宫格验证码图片并对其进行预处理。以下是代码示例:
import cv2
# 加载验证码图片
image = cv2.imread('captcha.png')
# 将图像转为灰度
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 应用阈值处理,将图像转换为二值图像
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)
步骤二:识别坐标位置
接下来,我们将使用OpenCV来查找九宫格的坐标位置。在这种类型的验证码中,通常有九个小图像块,每个块对应一个位置。以下是代码示例:
# 查找所有轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 初始化九宫格坐标列表
grid_coordinates = []
# 遍历每个轮廓
for contour in contours:
# 计算轮廓的面积
area = cv2.contourArea(contour)
if area > 100: # 通过调整面积阈值来筛选合适的轮廓
# 获取轮廓的边界框