给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入: 2 / \ 1 3 输出: true
示例 2:
输入: 5 / \ 1 4 / \ 3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。 根节点的值为 5 ,但是其右子节点值为 4
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
return dfs(root,INT_MIN,INT_MAX);
}
bool dfs(TreeNode* root,long long min_vaule, long long max_value){
if (root ==NULL) return true;// 如果树为空的话那么结果一定是 true
if(root->val<min_vaule || root->val>max_value) return false;//如果超出边界值的话那么应该返回false
return dfs(root->left,min_vaule,root->val-1ll) && dfs(root->right, root->val+1ll,max_value);
// 否则的话,在这里最后一步我们遍历一下树的左孩子和右孩子。。。
}
};
// 加油,加油。。。 Try to make yourself more excellent...