Hi,大家好,我是半亩花海。接着上次的感知机继续更新《白话机器学习的数学》这本书的学习笔记,在此分享线性可分这一分类算法原理。本章的分类算法原理基于《基于图像大小进行分类》项目,欢迎大家交流学习!
目录
一、线性可分概述
如下图所示,特征空间为二维,并且是一个二分类问题。线性可分的是存在一条直线可以将上图的 X 和 O 分开。对于三维的特征空间,分割的直线就变成了平面;对于四维以上,就称为超平面。
二、案例分析
我们知道上一节主要介绍了感知机这个模型的大致原理,链接如下:《机器学习 | 分类算法原理——感知机-CSDN博客》。其实,感知机模型相对来说非常简单又容易理解,当然相应地也有很多缺点。感知机的最大缺点就是它只能解决线性可分的问题。
那么什么是线性可分?之前的博客里我们尝试的是用直线对训练数据进行分类,现在假设有如下图的数据,其中圆点为 1,叉号为 −1,如果只用一条直线对这些数据进行分类,应该画一条什么样的线呢?
稍稍观察便能发现这是做不到的。线性可分指的就是能够使用直线分类的情况,像这样不能用直线分类的就不是线性可分。
这么说来,像照片这类的图像分类就并不是线性可分了。 这类图像数据的维度一般会很高,所以无法可视化。其实我们想一想也知道,根据图像特征进行分类的任务肯定不是那么简单的,在大部分情况下是线性不可分的。
因此,上一节提到的感知机是非常简单的模型(也被称为简单感知机或单层感知机),基本不会被应用在实际的问题中。 那么我们可以再思考一下,既然有单层感知机,那么就会有多层感知机。实际上多层感知机就是神经网络了,这是个表现力非常高的模型,后续有机会再说这个,要不然跑题了哈哈哈。