论文学习(一) | 电动汽车锂离子电池健康状态估计及寿命预测方法研究


Hi,大家好,我是半亩花海。本文主要对中文硕博论文《电动汽车锂离子电池健康状态估计及寿命预测方法研究》进行学习与阅读总结,便于后续科研进一步学习(纯小白自读汇总版)。总体感觉这篇有点偏向数理方面,不过后面还会学习其他算法模型在此场景下的应用。

目录

一、关键词

二、专业术语

三、研究现状

1. SOH估计研究现状

2. RUL预测研究现状

四、数据集

五、研究方法

六、研究结果


一、关键词

锂离子电池,SOH估计,RUL预测,多尺度扩展Kalman滤波,粒子滤波

二、专业术语

  • SOC:State of Charge,充电(荷电)状态。
  • SOH:State of Health,健康状态,反映电池当前的额定容量,即为当前额定容量和初始额定容量的比值(电池内阻、循环次数);也可表示为电池的老化状态,分为日历老化(不可逆转、搁置不用时的容量衰减)和循环老化(充放电时)。
  • EOL:End of Life, 寿命终止,表示电池参数达到更换阈值的时刻(电池需要更换)。
  • RUL:Remaining Useful Life,剩余可用寿命,表示从观测时刻到电池EOL所需的时间。
  • 多尺度估计:基于小波变换和多尺度理论。
  • 粒子滤波:Particle Filter, PF,基于蒙特卡洛思想的贝叶斯状态估计,估计在任意噪声背景下、任何形式的非线性系统的状态。

三、研究现状

1. SOH估计研究现状

(1)不基于模型

  • 直接测量:离线状态;非在线实时;测量特征参数(端电压、电流、温度、容量、欧姆内阻、循环次数)。
  • 基于数据:无先验知识、假设、物化公式;时间序列;方法:自回归滑动平均(ARMA)、韦伯定律。

(2)基于模型--建立数学模型

  • 电化学模型:电池内部物化反应。
  • 等效电路模型:估计模型参数(欧姆内阻/额定容量),等效电路。
  • 特性模型:在不同应激条件下的老化实验中得到的应激因素和老化表征参数(额定容量、欧姆内阻等)之间的简单关系。
  • 分析模型:基于做实验得到的试验数据,设计估计器得到模型参数;方法:库伦积分法(电流I对时间t积分)、神经网络(NN)、人工神经网络(ANN);输入变量:端电压、放电电流、放电容量、温度。

2. RUL预测研究现状

(1)基于电池使用状态和老化模型

  • 输入:电池使用时的测量数据/电池老化的特征参数(通过观测器得到)、电池未来使用状况。
  • 基于已有的电池老化模型进程查表。

(2)基于电池SOH和寿命预测模型

  • ①根据测量数据(端电压、电流、温度等)/老化特征参数(额定电容、内阻或二者组合)估计SOH;
  • ②输入SOH,分析SOH变化,拟合曲线,得出预测模型(SVM/粒子滤波/相关向量机)。
  • 输出:特征参数达到阈值EOL所需时间或循环次数。

四、数据集

测量电压、电流。

五、研究方法

(1)直接测量法(电池适应性好、精度高)

(2)等效电路模型法(实时性好)

①设计电池循环老化试验(自变量:循环次数、放电电流;因变量:电池老化;目的:验证老化特性);

②建立等效电路模型(SOC估计)、容量模型(SOH估计)、电池老化模型(RUL预测)。

(3)MEKF/多尺度扩展Kalman滤波算法(联合估计SOC和SOH,降低计算量)

(4)改进的粒子滤波算法(预测RUL/剩余循环次数)

六、研究结果

(1)指数模型比多项式模型可以更好地模拟电池容量衰减过程;

 

(2)MEKF算法与DEKF算法相比在估计精度上相差不大,有时甚至高于DEKF算法,但是MEKF算法的计算量远远小于DEKF算法;

(3)高斯高通滤波器(GHPF)算法可以对电池的RUL进行合理有效的预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半亩花海

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值