使用PyTorch构建卷积神经网络(CNN)
1. 卷积模式与自动学习核
在处理莫尔斯码音频信号时,NumPy卷积设置为“same”模式效果更好。构建一个卷积滤波器来检测莫尔斯码音频文件中的单个符号是一项艰巨的任务,而现在可以利用神经网络中的反向传播能力来自动学习合适的核,以检测与问题相关的所有不同信号。
2. CNN处理文本流程
- 文本预处理 :和之前的自然语言处理(NLP)流程一样,首先需要对文本进行分词,确定文本中所有使用的标记集合,忽略不需要统计的标记,并为词汇表中的每个单词分配一个整数索引。
 - 词嵌入 :CNN通常使用词嵌入而不是独热编码来表示每个单词。初始化一个词嵌入矩阵,行数与词汇表中的单词数相同,如果使用300维嵌入,则列数为300。可以将初始词嵌入都设置为0或一些小的随机值。若要进行知识迁移并使用预训练的词嵌入,可以在GloVe、Word2Vec、fastText等中查找标记,并将这些向量插入到嵌入矩阵中与词汇表索引匹配的行。
 - 卷积层处理 :对于一个四标记的句子,在词嵌入矩阵中查找每个嵌入后,会得到一个包含四个嵌入向量的序列。同时还会有额外的填充标记嵌入,通常设置为0以避免干扰卷积。如果使用最小的GloVe嵌入,词嵌入是50维的,那么对于这个短句子最终会得到一个50×4的数值矩阵。卷积层可以使用1D卷积核对这50个维度进行处理,例如使用核大小为2、步长为2,会得到一个50×2的矩阵来表示四个50维词向量的序列。
 - 池化层处理 :通
 
                      
                            
                        
                            
                            
                          
                          
                            
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					8万+
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            